ref: 30c22d842cffc737de00388af972110b89b1547c
dir: /third_party/googletest/src/include/gtest/internal/gtest-internal.h/
// Copyright 2005, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // // The Google C++ Testing Framework (Google Test) // // This header file declares functions and macros used internally by // Google Test. They are subject to change without notice. #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ #include "gtest/internal/gtest-port.h" #if GTEST_OS_LINUX # include <stdlib.h> # include <sys/types.h> # include <sys/wait.h> # include <unistd.h> #endif // GTEST_OS_LINUX #if GTEST_HAS_EXCEPTIONS # include <stdexcept> #endif #include <ctype.h> #include <float.h> #include <string.h> #include <iomanip> #include <limits> #include <map> #include <set> #include <string> #include <vector> #include "gtest/gtest-message.h" #include "gtest/internal/gtest-filepath.h" #include "gtest/internal/gtest-string.h" #include "gtest/internal/gtest-type-util.h" // Due to C++ preprocessor weirdness, we need double indirection to // concatenate two tokens when one of them is __LINE__. Writing // // foo ## __LINE__ // // will result in the token foo__LINE__, instead of foo followed by // the current line number. For more details, see // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar) #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar // Stringifies its argument. #define GTEST_STRINGIFY_(name) #name class ProtocolMessage; namespace proto2 { class Message; } namespace testing { // Forward declarations. class AssertionResult; // Result of an assertion. class Message; // Represents a failure message. class Test; // Represents a test. class TestInfo; // Information about a test. class TestPartResult; // Result of a test part. class UnitTest; // A collection of test cases. template <typename T> ::std::string PrintToString(const T& value); namespace internal { struct TraceInfo; // Information about a trace point. class TestInfoImpl; // Opaque implementation of TestInfo class UnitTestImpl; // Opaque implementation of UnitTest // The text used in failure messages to indicate the start of the // stack trace. GTEST_API_ extern const char kStackTraceMarker[]; // Two overloaded helpers for checking at compile time whether an // expression is a null pointer literal (i.e. NULL or any 0-valued // compile-time integral constant). Their return values have // different sizes, so we can use sizeof() to test which version is // picked by the compiler. These helpers have no implementations, as // we only need their signatures. // // Given IsNullLiteralHelper(x), the compiler will pick the first // version if x can be implicitly converted to Secret*, and pick the // second version otherwise. Since Secret is a secret and incomplete // type, the only expression a user can write that has type Secret* is // a null pointer literal. Therefore, we know that x is a null // pointer literal if and only if the first version is picked by the // compiler. char IsNullLiteralHelper(Secret* p); char (&IsNullLiteralHelper(...))[2]; // NOLINT // A compile-time bool constant that is true if and only if x is a // null pointer literal (i.e. NULL or any 0-valued compile-time // integral constant). #ifdef GTEST_ELLIPSIS_NEEDS_POD_ // We lose support for NULL detection where the compiler doesn't like // passing non-POD classes through ellipsis (...). # define GTEST_IS_NULL_LITERAL_(x) false #else # define GTEST_IS_NULL_LITERAL_(x) \ (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1) #endif // GTEST_ELLIPSIS_NEEDS_POD_ // Appends the user-supplied message to the Google-Test-generated message. GTEST_API_ std::string AppendUserMessage( const std::string& gtest_msg, const Message& user_msg); #if GTEST_HAS_EXCEPTIONS // This exception is thrown by (and only by) a failed Google Test // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions // are enabled). We derive it from std::runtime_error, which is for // errors presumably detectable only at run time. Since // std::runtime_error inherits from std::exception, many testing // frameworks know how to extract and print the message inside it. class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error { public: explicit GoogleTestFailureException(const TestPartResult& failure); }; #endif // GTEST_HAS_EXCEPTIONS namespace edit_distance { // Returns the optimal edits to go from 'left' to 'right'. // All edits cost the same, with replace having lower priority than // add/remove. // Simple implementation of the Wagner–Fischer algorithm. // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm enum EditType { kMatch, kAdd, kRemove, kReplace }; GTEST_API_ std::vector<EditType> CalculateOptimalEdits( const std::vector<size_t>& left, const std::vector<size_t>& right); // Same as above, but the input is represented as strings. GTEST_API_ std::vector<EditType> CalculateOptimalEdits( const std::vector<std::string>& left, const std::vector<std::string>& right); // Create a diff of the input strings in Unified diff format. GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left, const std::vector<std::string>& right, size_t context = 2); } // namespace edit_distance // Calculate the diff between 'left' and 'right' and return it in unified diff // format. // If not null, stores in 'total_line_count' the total number of lines found // in left + right. GTEST_API_ std::string DiffStrings(const std::string& left, const std::string& right, size_t* total_line_count); // Constructs and returns the message for an equality assertion // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure. // // The first four parameters are the expressions used in the assertion // and their values, as strings. For example, for ASSERT_EQ(foo, bar) // where foo is 5 and bar is 6, we have: // // expected_expression: "foo" // actual_expression: "bar" // expected_value: "5" // actual_value: "6" // // The ignoring_case parameter is true iff the assertion is a // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will // be inserted into the message. GTEST_API_ AssertionResult EqFailure(const char* expected_expression, const char* actual_expression, const std::string& expected_value, const std::string& actual_value, bool ignoring_case); // Constructs a failure message for Boolean assertions such as EXPECT_TRUE. GTEST_API_ std::string GetBoolAssertionFailureMessage( const AssertionResult& assertion_result, const char* expression_text, const char* actual_predicate_value, const char* expected_predicate_value); // This template class represents an IEEE floating-point number // (either single-precision or double-precision, depending on the // template parameters). // // The purpose of this class is to do more sophisticated number // comparison. (Due to round-off error, etc, it's very unlikely that // two floating-points will be equal exactly. Hence a naive // comparison by the == operation often doesn't work.) // // Format of IEEE floating-point: // // The most-significant bit being the leftmost, an IEEE // floating-point looks like // // sign_bit exponent_bits fraction_bits // // Here, sign_bit is a single bit that designates the sign of the // number. // // For float, there are 8 exponent bits and 23 fraction bits. // // For double, there are 11 exponent bits and 52 fraction bits. // // More details can be found at // http://en.wikipedia.org/wiki/IEEE_floating-point_standard. // // Template parameter: // // RawType: the raw floating-point type (either float or double) template <typename RawType> class FloatingPoint { public: // Defines the unsigned integer type that has the same size as the // floating point number. typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits; // Constants. // # of bits in a number. static const size_t kBitCount = 8*sizeof(RawType); // # of fraction bits in a number. static const size_t kFractionBitCount = std::numeric_limits<RawType>::digits - 1; // # of exponent bits in a number. static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount; // The mask for the sign bit. static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1); // The mask for the fraction bits. static const Bits kFractionBitMask = ~static_cast<Bits>(0) >> (kExponentBitCount + 1); // The mask for the exponent bits. static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask); // How many ULP's (Units in the Last Place) we want to tolerate when // comparing two numbers. The larger the value, the more error we // allow. A 0 value means that two numbers must be exactly the same // to be considered equal. // // The maximum error of a single floating-point operation is 0.5 // units in the last place. On Intel CPU's, all floating-point // calculations are done with 80-bit precision, while double has 64 // bits. Therefore, 4 should be enough for ordinary use. // // See the following article for more details on ULP: // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ static const size_t kMaxUlps = 4; // Constructs a FloatingPoint from a raw floating-point number. // // On an Intel CPU, passing a non-normalized NAN (Not a Number) // around may change its bits, although the new value is guaranteed // to be also a NAN. Therefore, don't expect this constructor to // preserve the bits in x when x is a NAN. explicit FloatingPoint(const RawType& x) { u_.value_ = x; } // Static methods // Reinterprets a bit pattern as a floating-point number. // // This function is needed to test the AlmostEquals() method. static RawType ReinterpretBits(const Bits bits) { FloatingPoint fp(0); fp.u_.bits_ = bits; return fp.u_.value_; } // Returns the floating-point number that represent positive infinity. static RawType Infinity() { return ReinterpretBits(kExponentBitMask); } // Returns the maximum representable finite floating-point number. static RawType Max(); // Non-static methods // Returns the bits that represents this number. const Bits &bits() const { return u_.bits_; } // Returns the exponent bits of this number. Bits exponent_bits() const { return kExponentBitMask & u_.bits_; } // Returns the fraction bits of this number. Bits fraction_bits() const { return kFractionBitMask & u_.bits_; } // Returns the sign bit of this number. Bits sign_bit() const { return kSignBitMask & u_.bits_; } // Returns true iff this is NAN (not a number). bool is_nan() const { // It's a NAN if the exponent bits are all ones and the fraction // bits are not entirely zeros. return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0); } // Returns true iff this number is at most kMaxUlps ULP's away from // rhs. In particular, this function: // // - returns false if either number is (or both are) NAN. // - treats really large numbers as almost equal to infinity. // - thinks +0.0 and -0.0 are 0 DLP's apart. bool AlmostEquals(const FloatingPoint& rhs) const { // The IEEE standard says that any comparison operation involving // a NAN must return false. if (is_nan() || rhs.is_nan()) return false; return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_) <= kMaxUlps; } private: // The data type used to store the actual floating-point number. union FloatingPointUnion { RawType value_; // The raw floating-point number. Bits bits_; // The bits that represent the number. }; // Converts an integer from the sign-and-magnitude representation to // the biased representation. More precisely, let N be 2 to the // power of (kBitCount - 1), an integer x is represented by the // unsigned number x + N. // // For instance, // // -N + 1 (the most negative number representable using // sign-and-magnitude) is represented by 1; // 0 is represented by N; and // N - 1 (the biggest number representable using // sign-and-magnitude) is represented by 2N - 1. // // Read http://en.wikipedia.org/wiki/Signed_number_representations // for more details on signed number representations. static Bits SignAndMagnitudeToBiased(const Bits &sam) { if (kSignBitMask & sam) { // sam represents a negative number. return ~sam + 1; } else { // sam represents a positive number. return kSignBitMask | sam; } } // Given two numbers in the sign-and-magnitude representation, // returns the distance between them as an unsigned number. static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1, const Bits &sam2) { const Bits biased1 = SignAndMagnitudeToBiased(sam1); const Bits biased2 = SignAndMagnitudeToBiased(sam2); return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1); } FloatingPointUnion u_; }; // We cannot use std::numeric_limits<T>::max() as it clashes with the max() // macro defined by <windows.h>. template <> inline float FloatingPoint<float>::Max() { return FLT_MAX; } template <> inline double FloatingPoint<double>::Max() { return DBL_MAX; } // Typedefs the instances of the FloatingPoint template class that we // care to use. typedef FloatingPoint<float> Float; typedef FloatingPoint<double> Double; // In order to catch the mistake of putting tests that use different // test fixture classes in the same test case, we need to assign // unique IDs to fixture classes and compare them. The TypeId type is // used to hold such IDs. The user should treat TypeId as an opaque // type: the only operation allowed on TypeId values is to compare // them for equality using the == operator. typedef const void* TypeId; template <typename T> class TypeIdHelper { public: // dummy_ must not have a const type. Otherwise an overly eager // compiler (e.g. MSVC 7.1 & 8.0) may try to merge // TypeIdHelper<T>::dummy_ for different Ts as an "optimization". static bool dummy_; }; template <typename T> bool TypeIdHelper<T>::dummy_ = false; // GetTypeId<T>() returns the ID of type T. Different values will be // returned for different types. Calling the function twice with the // same type argument is guaranteed to return the same ID. template <typename T> TypeId GetTypeId() { // The compiler is required to allocate a different // TypeIdHelper<T>::dummy_ variable for each T used to instantiate // the template. Therefore, the address of dummy_ is guaranteed to // be unique. return &(TypeIdHelper<T>::dummy_); } // Returns the type ID of ::testing::Test. Always call this instead // of GetTypeId< ::testing::Test>() to get the type ID of // ::testing::Test, as the latter may give the wrong result due to a // suspected linker bug when compiling Google Test as a Mac OS X // framework. GTEST_API_ TypeId GetTestTypeId(); // Defines the abstract factory interface that creates instances // of a Test object. class TestFactoryBase { public: virtual ~TestFactoryBase() {} // Creates a test instance to run. The instance is both created and destroyed // within TestInfoImpl::Run() virtual Test* CreateTest() = 0; protected: TestFactoryBase() {} private: GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase); }; // This class provides implementation of TeastFactoryBase interface. // It is used in TEST and TEST_F macros. template <class TestClass> class TestFactoryImpl : public TestFactoryBase { public: virtual Test* CreateTest() { return new TestClass; } }; #if GTEST_OS_WINDOWS // Predicate-formatters for implementing the HRESULT checking macros // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED} // We pass a long instead of HRESULT to avoid causing an // include dependency for the HRESULT type. GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr, long hr); // NOLINT GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr, long hr); // NOLINT #endif // GTEST_OS_WINDOWS // Types of SetUpTestCase() and TearDownTestCase() functions. typedef void (*SetUpTestCaseFunc)(); typedef void (*TearDownTestCaseFunc)(); struct CodeLocation { CodeLocation(const std::string& a_file, int a_line) : file(a_file), line(a_line) {} std::string file; int line; }; // Creates a new TestInfo object and registers it with Google Test; // returns the created object. // // Arguments: // // test_case_name: name of the test case // name: name of the test // type_param the name of the test's type parameter, or NULL if // this is not a typed or a type-parameterized test. // value_param text representation of the test's value parameter, // or NULL if this is not a type-parameterized test. // code_location: code location where the test is defined // fixture_class_id: ID of the test fixture class // set_up_tc: pointer to the function that sets up the test case // tear_down_tc: pointer to the function that tears down the test case // factory: pointer to the factory that creates a test object. // The newly created TestInfo instance will assume // ownership of the factory object. GTEST_API_ TestInfo* MakeAndRegisterTestInfo( const char* test_case_name, const char* name, const char* type_param, const char* value_param, CodeLocation code_location, TypeId fixture_class_id, SetUpTestCaseFunc set_up_tc, TearDownTestCaseFunc tear_down_tc, TestFactoryBase* factory); // If *pstr starts with the given prefix, modifies *pstr to be right // past the prefix and returns true; otherwise leaves *pstr unchanged // and returns false. None of pstr, *pstr, and prefix can be NULL. GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr); #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P // State of the definition of a type-parameterized test case. class GTEST_API_ TypedTestCasePState { public: TypedTestCasePState() : registered_(false) {} // Adds the given test name to defined_test_names_ and return true // if the test case hasn't been registered; otherwise aborts the // program. bool AddTestName(const char* file, int line, const char* case_name, const char* test_name) { if (registered_) { fprintf(stderr, "%s Test %s must be defined before " "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n", FormatFileLocation(file, line).c_str(), test_name, case_name); fflush(stderr); posix::Abort(); } registered_tests_.insert( ::std::make_pair(test_name, CodeLocation(file, line))); return true; } bool TestExists(const std::string& test_name) const { return registered_tests_.count(test_name) > 0; } const CodeLocation& GetCodeLocation(const std::string& test_name) const { RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name); GTEST_CHECK_(it != registered_tests_.end()); return it->second; } // Verifies that registered_tests match the test names in // defined_test_names_; returns registered_tests if successful, or // aborts the program otherwise. const char* VerifyRegisteredTestNames( const char* file, int line, const char* registered_tests); private: typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap; bool registered_; RegisteredTestsMap registered_tests_; }; // Skips to the first non-space char after the first comma in 'str'; // returns NULL if no comma is found in 'str'. inline const char* SkipComma(const char* str) { const char* comma = strchr(str, ','); if (comma == NULL) { return NULL; } while (IsSpace(*(++comma))) {} return comma; } // Returns the prefix of 'str' before the first comma in it; returns // the entire string if it contains no comma. inline std::string GetPrefixUntilComma(const char* str) { const char* comma = strchr(str, ','); return comma == NULL ? str : std::string(str, comma); } // Splits a given string on a given delimiter, populating a given // vector with the fields. void SplitString(const ::std::string& str, char delimiter, ::std::vector< ::std::string>* dest); // TypeParameterizedTest<Fixture, TestSel, Types>::Register() // registers a list of type-parameterized tests with Google Test. The // return value is insignificant - we just need to return something // such that we can call this function in a namespace scope. // // Implementation note: The GTEST_TEMPLATE_ macro declares a template // template parameter. It's defined in gtest-type-util.h. template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types> class TypeParameterizedTest { public: // 'index' is the index of the test in the type list 'Types' // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase, // Types). Valid values for 'index' are [0, N - 1] where N is the // length of Types. static bool Register(const char* prefix, const CodeLocation& code_location, const char* case_name, const char* test_names, int index) { typedef typename Types::Head Type; typedef Fixture<Type> FixtureClass; typedef typename GTEST_BIND_(TestSel, Type) TestClass; // First, registers the first type-parameterized test in the type // list. MakeAndRegisterTestInfo( (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + "/" + StreamableToString(index)).c_str(), StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(), GetTypeName<Type>().c_str(), NULL, // No value parameter. code_location, GetTypeId<FixtureClass>(), TestClass::SetUpTestCase, TestClass::TearDownTestCase, new TestFactoryImpl<TestClass>); // Next, recurses (at compile time) with the tail of the type list. return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail> ::Register(prefix, code_location, case_name, test_names, index + 1); } }; // The base case for the compile time recursion. template <GTEST_TEMPLATE_ Fixture, class TestSel> class TypeParameterizedTest<Fixture, TestSel, Types0> { public: static bool Register(const char* /*prefix*/, const CodeLocation&, const char* /*case_name*/, const char* /*test_names*/, int /*index*/) { return true; } }; // TypeParameterizedTestCase<Fixture, Tests, Types>::Register() // registers *all combinations* of 'Tests' and 'Types' with Google // Test. The return value is insignificant - we just need to return // something such that we can call this function in a namespace scope. template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types> class TypeParameterizedTestCase { public: static bool Register(const char* prefix, CodeLocation code_location, const TypedTestCasePState* state, const char* case_name, const char* test_names) { std::string test_name = StripTrailingSpaces( GetPrefixUntilComma(test_names)); if (!state->TestExists(test_name)) { fprintf(stderr, "Failed to get code location for test %s.%s at %s.", case_name, test_name.c_str(), FormatFileLocation(code_location.file.c_str(), code_location.line).c_str()); fflush(stderr); posix::Abort(); } const CodeLocation& test_location = state->GetCodeLocation(test_name); typedef typename Tests::Head Head; // First, register the first test in 'Test' for each type in 'Types'. TypeParameterizedTest<Fixture, Head, Types>::Register( prefix, test_location, case_name, test_names, 0); // Next, recurses (at compile time) with the tail of the test list. return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types> ::Register(prefix, code_location, state, case_name, SkipComma(test_names)); } }; // The base case for the compile time recursion. template <GTEST_TEMPLATE_ Fixture, typename Types> class TypeParameterizedTestCase<Fixture, Templates0, Types> { public: static bool Register(const char* /*prefix*/, const CodeLocation&, const TypedTestCasePState* /*state*/, const char* /*case_name*/, const char* /*test_names*/) { return true; } }; #endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P // Returns the current OS stack trace as an std::string. // // The maximum number of stack frames to be included is specified by // the gtest_stack_trace_depth flag. The skip_count parameter // specifies the number of top frames to be skipped, which doesn't // count against the number of frames to be included. // // For example, if Foo() calls Bar(), which in turn calls // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't. GTEST_API_ std::string GetCurrentOsStackTraceExceptTop( UnitTest* unit_test, int skip_count); // Helpers for suppressing warnings on unreachable code or constant // condition. // Always returns true. GTEST_API_ bool AlwaysTrue(); // Always returns false. inline bool AlwaysFalse() { return !AlwaysTrue(); } // Helper for suppressing false warning from Clang on a const char* // variable declared in a conditional expression always being NULL in // the else branch. struct GTEST_API_ ConstCharPtr { ConstCharPtr(const char* str) : value(str) {} operator bool() const { return true; } const char* value; }; // A simple Linear Congruential Generator for generating random // numbers with a uniform distribution. Unlike rand() and srand(), it // doesn't use global state (and therefore can't interfere with user // code). Unlike rand_r(), it's portable. An LCG isn't very random, // but it's good enough for our purposes. class GTEST_API_ Random { public: static const UInt32 kMaxRange = 1u << 31; explicit Random(UInt32 seed) : state_(seed) {} void Reseed(UInt32 seed) { state_ = seed; } // Generates a random number from [0, range). Crashes if 'range' is // 0 or greater than kMaxRange. UInt32 Generate(UInt32 range); private: UInt32 state_; GTEST_DISALLOW_COPY_AND_ASSIGN_(Random); }; // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a // compiler error iff T1 and T2 are different types. template <typename T1, typename T2> struct CompileAssertTypesEqual; template <typename T> struct CompileAssertTypesEqual<T, T> { }; // Removes the reference from a type if it is a reference type, // otherwise leaves it unchanged. This is the same as // tr1::remove_reference, which is not widely available yet. template <typename T> struct RemoveReference { typedef T type; }; // NOLINT template <typename T> struct RemoveReference<T&> { typedef T type; }; // NOLINT // A handy wrapper around RemoveReference that works when the argument // T depends on template parameters. #define GTEST_REMOVE_REFERENCE_(T) \ typename ::testing::internal::RemoveReference<T>::type // Removes const from a type if it is a const type, otherwise leaves // it unchanged. This is the same as tr1::remove_const, which is not // widely available yet. template <typename T> struct RemoveConst { typedef T type; }; // NOLINT template <typename T> struct RemoveConst<const T> { typedef T type; }; // NOLINT // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above // definition to fail to remove the const in 'const int[3]' and 'const // char[3][4]'. The following specialization works around the bug. template <typename T, size_t N> struct RemoveConst<const T[N]> { typedef typename RemoveConst<T>::type type[N]; }; #if defined(_MSC_VER) && _MSC_VER < 1400 // This is the only specialization that allows VC++ 7.1 to remove const in // 'const int[3] and 'const int[3][4]'. However, it causes trouble with GCC // and thus needs to be conditionally compiled. template <typename T, size_t N> struct RemoveConst<T[N]> { typedef typename RemoveConst<T>::type type[N]; }; #endif // A handy wrapper around RemoveConst that works when the argument // T depends on template parameters. #define GTEST_REMOVE_CONST_(T) \ typename ::testing::internal::RemoveConst<T>::type // Turns const U&, U&, const U, and U all into U. #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \ GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T)) // ImplicitlyConvertible<From, To>::value is a compile-time bool // constant that's true iff type From can be implicitly converted to // type To. template <typename From, typename To> class ImplicitlyConvertible { private: // We need the following helper functions only for their types. // They have no implementations. // MakeFrom() is an expression whose type is From. We cannot simply // use From(), as the type From may not have a public default // constructor. static typename AddReference<From>::type MakeFrom(); // These two functions are overloaded. Given an expression // Helper(x), the compiler will pick the first version if x can be // implicitly converted to type To; otherwise it will pick the // second version. // // The first version returns a value of size 1, and the second // version returns a value of size 2. Therefore, by checking the // size of Helper(x), which can be done at compile time, we can tell // which version of Helper() is used, and hence whether x can be // implicitly converted to type To. static char Helper(To); static char (&Helper(...))[2]; // NOLINT // We have to put the 'public' section after the 'private' section, // or MSVC refuses to compile the code. public: #if defined(__BORLANDC__) // C++Builder cannot use member overload resolution during template // instantiation. The simplest workaround is to use its C++0x type traits // functions (C++Builder 2009 and above only). static const bool value = __is_convertible(From, To); #else // MSVC warns about implicitly converting from double to int for // possible loss of data, so we need to temporarily disable the // warning. GTEST_DISABLE_MSC_WARNINGS_PUSH_(4244) static const bool value = sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1; GTEST_DISABLE_MSC_WARNINGS_POP_() #endif // __BORLANDC__ }; template <typename From, typename To> const bool ImplicitlyConvertible<From, To>::value; // IsAProtocolMessage<T>::value is a compile-time bool constant that's // true iff T is type ProtocolMessage, proto2::Message, or a subclass // of those. template <typename T> struct IsAProtocolMessage : public bool_constant< ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value || ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> { }; // When the compiler sees expression IsContainerTest<C>(0), if C is an // STL-style container class, the first overload of IsContainerTest // will be viable (since both C::iterator* and C::const_iterator* are // valid types and NULL can be implicitly converted to them). It will // be picked over the second overload as 'int' is a perfect match for // the type of argument 0. If C::iterator or C::const_iterator is not // a valid type, the first overload is not viable, and the second // overload will be picked. Therefore, we can determine whether C is // a container class by checking the type of IsContainerTest<C>(0). // The value of the expression is insignificant. // // In C++11 mode we check the existence of a const_iterator and that an // iterator is properly implemented for the container. // // For pre-C++11 that we look for both C::iterator and C::const_iterator. // The reason is that C++ injects the name of a class as a member of the // class itself (e.g. you can refer to class iterator as either // 'iterator' or 'iterator::iterator'). If we look for C::iterator // only, for example, we would mistakenly think that a class named // iterator is an STL container. // // Also note that the simpler approach of overloading // IsContainerTest(typename C::const_iterator*) and // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++. typedef int IsContainer; #if GTEST_LANG_CXX11 template <class C, class Iterator = decltype(::std::declval<const C&>().begin()), class = decltype(::std::declval<const C&>().end()), class = decltype(++::std::declval<Iterator&>()), class = decltype(*::std::declval<Iterator>()), class = typename C::const_iterator> IsContainer IsContainerTest(int /* dummy */) { return 0; } #else template <class C> IsContainer IsContainerTest(int /* dummy */, typename C::iterator* /* it */ = NULL, typename C::const_iterator* /* const_it */ = NULL) { return 0; } #endif // GTEST_LANG_CXX11 typedef char IsNotContainer; template <class C> IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; } // Trait to detect whether a type T is a hash table. // The heuristic used is that the type contains an inner type `hasher` and does // not contain an inner type `reverse_iterator`. // If the container is iterable in reverse, then order might actually matter. template <typename T> struct IsHashTable { private: template <typename U> static char test(typename U::hasher*, typename U::reverse_iterator*); template <typename U> static int test(typename U::hasher*, ...); template <typename U> static char test(...); public: static const bool value = sizeof(test<T>(0, 0)) == sizeof(int); }; template <typename T> const bool IsHashTable<T>::value; template<typename T> struct VoidT { typedef void value_type; }; template <typename T, typename = void> struct HasValueType : false_type {}; template <typename T> struct HasValueType<T, VoidT<typename T::value_type> > : true_type { }; template <typename C, bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer), bool = HasValueType<C>::value> struct IsRecursiveContainerImpl; template <typename C, bool HV> struct IsRecursiveContainerImpl<C, false, HV> : public false_type {}; // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to // obey the same inconsistencies as the IsContainerTest, namely check if // something is a container is relying on only const_iterator in C++11 and // is relying on both const_iterator and iterator otherwise template <typename C> struct IsRecursiveContainerImpl<C, true, false> : public false_type {}; template <typename C> struct IsRecursiveContainerImpl<C, true, true> { #if GTEST_LANG_CXX11 typedef typename IteratorTraits<typename C::const_iterator>::value_type value_type; #else typedef typename IteratorTraits<typename C::iterator>::value_type value_type; #endif typedef is_same<value_type, C> type; }; // IsRecursiveContainer<Type> is a unary compile-time predicate that // evaluates whether C is a recursive container type. A recursive container // type is a container type whose value_type is equal to the container type // itself. An example for a recursive container type is // boost::filesystem::path, whose iterator has a value_type that is equal to // boost::filesystem::path. template <typename C> struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {}; // EnableIf<condition>::type is void when 'Cond' is true, and // undefined when 'Cond' is false. To use SFINAE to make a function // overload only apply when a particular expression is true, add // "typename EnableIf<expression>::type* = 0" as the last parameter. template<bool> struct EnableIf; template<> struct EnableIf<true> { typedef void type; }; // NOLINT // Utilities for native arrays. // ArrayEq() compares two k-dimensional native arrays using the // elements' operator==, where k can be any integer >= 0. When k is // 0, ArrayEq() degenerates into comparing a single pair of values. template <typename T, typename U> bool ArrayEq(const T* lhs, size_t size, const U* rhs); // This generic version is used when k is 0. template <typename T, typename U> inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; } // This overload is used when k >= 1. template <typename T, typename U, size_t N> inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) { return internal::ArrayEq(lhs, N, rhs); } // This helper reduces code bloat. If we instead put its logic inside // the previous ArrayEq() function, arrays with different sizes would // lead to different copies of the template code. template <typename T, typename U> bool ArrayEq(const T* lhs, size_t size, const U* rhs) { for (size_t i = 0; i != size; i++) { if (!internal::ArrayEq(lhs[i], rhs[i])) return false; } return true; } // Finds the first element in the iterator range [begin, end) that // equals elem. Element may be a native array type itself. template <typename Iter, typename Element> Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) { for (Iter it = begin; it != end; ++it) { if (internal::ArrayEq(*it, elem)) return it; } return end; } // CopyArray() copies a k-dimensional native array using the elements' // operator=, where k can be any integer >= 0. When k is 0, // CopyArray() degenerates into copying a single value. template <typename T, typename U> void CopyArray(const T* from, size_t size, U* to); // This generic version is used when k is 0. template <typename T, typename U> inline void CopyArray(const T& from, U* to) { *to = from; } // This overload is used when k >= 1. template <typename T, typename U, size_t N> inline void CopyArray(const T(&from)[N], U(*to)[N]) { internal::CopyArray(from, N, *to); } // This helper reduces code bloat. If we instead put its logic inside // the previous CopyArray() function, arrays with different sizes // would lead to different copies of the template code. template <typename T, typename U> void CopyArray(const T* from, size_t size, U* to) { for (size_t i = 0; i != size; i++) { internal::CopyArray(from[i], to + i); } } // The relation between an NativeArray object (see below) and the // native array it represents. // We use 2 different structs to allow non-copyable types to be used, as long // as RelationToSourceReference() is passed. struct RelationToSourceReference {}; struct RelationToSourceCopy {}; // Adapts a native array to a read-only STL-style container. Instead // of the complete STL container concept, this adaptor only implements // members useful for Google Mock's container matchers. New members // should be added as needed. To simplify the implementation, we only // support Element being a raw type (i.e. having no top-level const or // reference modifier). It's the client's responsibility to satisfy // this requirement. Element can be an array type itself (hence // multi-dimensional arrays are supported). template <typename Element> class NativeArray { public: // STL-style container typedefs. typedef Element value_type; typedef Element* iterator; typedef const Element* const_iterator; // Constructs from a native array. References the source. NativeArray(const Element* array, size_t count, RelationToSourceReference) { InitRef(array, count); } // Constructs from a native array. Copies the source. NativeArray(const Element* array, size_t count, RelationToSourceCopy) { InitCopy(array, count); } // Copy constructor. NativeArray(const NativeArray& rhs) { (this->*rhs.clone_)(rhs.array_, rhs.size_); } ~NativeArray() { if (clone_ != &NativeArray::InitRef) delete[] array_; } // STL-style container methods. size_t size() const { return size_; } const_iterator begin() const { return array_; } const_iterator end() const { return array_ + size_; } bool operator==(const NativeArray& rhs) const { return size() == rhs.size() && ArrayEq(begin(), size(), rhs.begin()); } private: enum { kCheckTypeIsNotConstOrAReference = StaticAssertTypeEqHelper< Element, GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>::value }; // Initializes this object with a copy of the input. void InitCopy(const Element* array, size_t a_size) { Element* const copy = new Element[a_size]; CopyArray(array, a_size, copy); array_ = copy; size_ = a_size; clone_ = &NativeArray::InitCopy; } // Initializes this object with a reference of the input. void InitRef(const Element* array, size_t a_size) { array_ = array; size_ = a_size; clone_ = &NativeArray::InitRef; } const Element* array_; size_t size_; void (NativeArray::*clone_)(const Element*, size_t); GTEST_DISALLOW_ASSIGN_(NativeArray); }; } // namespace internal } // namespace testing #define GTEST_MESSAGE_AT_(file, line, message, result_type) \ ::testing::internal::AssertHelper(result_type, file, line, message) \ = ::testing::Message() #define GTEST_MESSAGE_(message, result_type) \ GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type) #define GTEST_FATAL_FAILURE_(message) \ return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure) #define GTEST_NONFATAL_FAILURE_(message) \ GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure) #define GTEST_SUCCESS_(message) \ GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess) // Suppresses MSVC warnings 4072 (unreachable code) for the code following // statement if it returns or throws (or doesn't return or throw in some // situations). #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \ if (::testing::internal::AlwaysTrue()) { statement; } #define GTEST_TEST_THROW_(statement, expected_exception, fail) \ GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (::testing::internal::ConstCharPtr gtest_msg = "") { \ bool gtest_caught_expected = false; \ try { \ GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ } \ catch (expected_exception const&) { \ gtest_caught_expected = true; \ } \ catch (...) { \ gtest_msg.value = \ "Expected: " #statement " throws an exception of type " \ #expected_exception ".\n Actual: it throws a different type."; \ goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ } \ if (!gtest_caught_expected) { \ gtest_msg.value = \ "Expected: " #statement " throws an exception of type " \ #expected_exception ".\n Actual: it throws nothing."; \ goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ } \ } else \ GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \ fail(gtest_msg.value) #define GTEST_TEST_NO_THROW_(statement, fail) \ GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (::testing::internal::AlwaysTrue()) { \ try { \ GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ } \ catch (...) { \ goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \ } \ } else \ GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \ fail("Expected: " #statement " doesn't throw an exception.\n" \ " Actual: it throws.") #define GTEST_TEST_ANY_THROW_(statement, fail) \ GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (::testing::internal::AlwaysTrue()) { \ bool gtest_caught_any = false; \ try { \ GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ } \ catch (...) { \ gtest_caught_any = true; \ } \ if (!gtest_caught_any) { \ goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \ } \ } else \ GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \ fail("Expected: " #statement " throws an exception.\n" \ " Actual: it doesn't.") // Implements Boolean test assertions such as EXPECT_TRUE. expression can be // either a boolean expression or an AssertionResult. text is a textual // represenation of expression as it was passed into the EXPECT_TRUE. #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \ GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (const ::testing::AssertionResult gtest_ar_ = \ ::testing::AssertionResult(expression)) \ ; \ else \ fail(::testing::internal::GetBoolAssertionFailureMessage(\ gtest_ar_, text, #actual, #expected).c_str()) #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \ GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ if (::testing::internal::AlwaysTrue()) { \ ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \ GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \ goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \ } \ } else \ GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \ fail("Expected: " #statement " doesn't generate new fatal " \ "failures in the current thread.\n" \ " Actual: it does.") // Expands to the name of the class that implements the given test. #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \ test_case_name##_##test_name##_Test // Helper macro for defining tests. #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\ class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\ public:\ GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\ private:\ virtual void TestBody();\ static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\ GTEST_DISALLOW_COPY_AND_ASSIGN_(\ GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\ };\ \ ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\ ::test_info_ =\ ::testing::internal::MakeAndRegisterTestInfo(\ #test_case_name, #test_name, NULL, NULL, \ ::testing::internal::CodeLocation(__FILE__, __LINE__), \ (parent_id), \ parent_class::SetUpTestCase, \ parent_class::TearDownTestCase, \ new ::testing::internal::TestFactoryImpl<\ GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\ void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody() #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_