ref: 2c6736506eac9c929d536fd30fa6af5c315e2f48
dir: /vpx_dsp/x86/variance_avx2.c/
/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <immintrin.h> // AVX2 #include "./vpx_dsp_rtcd.h" /* clang-format off */ DECLARE_ALIGNED(32, static const uint8_t, bilinear_filters_avx2[512]) = { 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, }; DECLARE_ALIGNED(32, static const int8_t, adjacent_sub_avx2[32]) = { 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1 }; /* clang-format on */ void vpx_get16x16var_avx2(const unsigned char *src_ptr, int source_stride, const unsigned char *ref_ptr, int recon_stride, unsigned int *sse, int *sum) { unsigned int i, src_2strides, ref_2strides; __m256i sum_reg = _mm256_setzero_si256(); __m256i sse_reg = _mm256_setzero_si256(); // process two 16 byte locations in a 256 bit register src_2strides = source_stride << 1; ref_2strides = recon_stride << 1; for (i = 0; i < 8; ++i) { // convert up values in 128 bit registers across lanes const __m256i src0 = _mm256_cvtepu8_epi16(_mm_loadu_si128((__m128i const *)(src_ptr))); const __m256i src1 = _mm256_cvtepu8_epi16( _mm_loadu_si128((__m128i const *)(src_ptr + source_stride))); const __m256i ref0 = _mm256_cvtepu8_epi16(_mm_loadu_si128((__m128i const *)(ref_ptr))); const __m256i ref1 = _mm256_cvtepu8_epi16( _mm_loadu_si128((__m128i const *)(ref_ptr + recon_stride))); const __m256i diff0 = _mm256_sub_epi16(src0, ref0); const __m256i diff1 = _mm256_sub_epi16(src1, ref1); const __m256i madd0 = _mm256_madd_epi16(diff0, diff0); const __m256i madd1 = _mm256_madd_epi16(diff1, diff1); // add to the running totals sum_reg = _mm256_add_epi16(sum_reg, _mm256_add_epi16(diff0, diff1)); sse_reg = _mm256_add_epi32(sse_reg, _mm256_add_epi32(madd0, madd1)); src_ptr += src_2strides; ref_ptr += ref_2strides; } { // extract the low lane and add it to the high lane const __m128i sum_reg_128 = _mm_add_epi16( _mm256_castsi256_si128(sum_reg), _mm256_extractf128_si256(sum_reg, 1)); const __m128i sse_reg_128 = _mm_add_epi32( _mm256_castsi256_si128(sse_reg), _mm256_extractf128_si256(sse_reg, 1)); // sum upper and lower 64 bits together and convert up to 32 bit values const __m128i sum_reg_64 = _mm_add_epi16(sum_reg_128, _mm_srli_si128(sum_reg_128, 8)); const __m128i sum_int32 = _mm_cvtepi16_epi32(sum_reg_64); // unpack sse and sum registers and add const __m128i sse_sum_lo = _mm_unpacklo_epi32(sse_reg_128, sum_int32); const __m128i sse_sum_hi = _mm_unpackhi_epi32(sse_reg_128, sum_int32); const __m128i sse_sum = _mm_add_epi32(sse_sum_lo, sse_sum_hi); // perform the final summation and extract the results const __m128i res = _mm_add_epi32(sse_sum, _mm_srli_si128(sse_sum, 8)); *((int *)sse) = _mm_cvtsi128_si32(res); *((int *)sum) = _mm_extract_epi32(res, 1); } } static void get32x16var_avx2(const unsigned char *src_ptr, int source_stride, const unsigned char *ref_ptr, int recon_stride, unsigned int *sse, int *sum) { unsigned int i, src_2strides, ref_2strides; const __m256i adj_sub = _mm256_load_si256((__m256i const *)adjacent_sub_avx2); __m256i sum_reg = _mm256_setzero_si256(); __m256i sse_reg = _mm256_setzero_si256(); // process 64 elements in an iteration src_2strides = source_stride << 1; ref_2strides = recon_stride << 1; for (i = 0; i < 8; i++) { const __m256i src0 = _mm256_loadu_si256((__m256i const *)(src_ptr)); const __m256i src1 = _mm256_loadu_si256((__m256i const *)(src_ptr + source_stride)); const __m256i ref0 = _mm256_loadu_si256((__m256i const *)(ref_ptr)); const __m256i ref1 = _mm256_loadu_si256((__m256i const *)(ref_ptr + recon_stride)); // unpack into pairs of source and reference values const __m256i src_ref0 = _mm256_unpacklo_epi8(src0, ref0); const __m256i src_ref1 = _mm256_unpackhi_epi8(src0, ref0); const __m256i src_ref2 = _mm256_unpacklo_epi8(src1, ref1); const __m256i src_ref3 = _mm256_unpackhi_epi8(src1, ref1); // subtract adjacent elements using src*1 + ref*-1 const __m256i diff0 = _mm256_maddubs_epi16(src_ref0, adj_sub); const __m256i diff1 = _mm256_maddubs_epi16(src_ref1, adj_sub); const __m256i diff2 = _mm256_maddubs_epi16(src_ref2, adj_sub); const __m256i diff3 = _mm256_maddubs_epi16(src_ref3, adj_sub); const __m256i madd0 = _mm256_madd_epi16(diff0, diff0); const __m256i madd1 = _mm256_madd_epi16(diff1, diff1); const __m256i madd2 = _mm256_madd_epi16(diff2, diff2); const __m256i madd3 = _mm256_madd_epi16(diff3, diff3); // add to the running totals sum_reg = _mm256_add_epi16(sum_reg, _mm256_add_epi16(diff0, diff1)); sum_reg = _mm256_add_epi16(sum_reg, _mm256_add_epi16(diff2, diff3)); sse_reg = _mm256_add_epi32(sse_reg, _mm256_add_epi32(madd0, madd1)); sse_reg = _mm256_add_epi32(sse_reg, _mm256_add_epi32(madd2, madd3)); src_ptr += src_2strides; ref_ptr += ref_2strides; } { // extract the low lane and add it to the high lane const __m128i sum_reg_128 = _mm_add_epi16( _mm256_castsi256_si128(sum_reg), _mm256_extractf128_si256(sum_reg, 1)); const __m128i sse_reg_128 = _mm_add_epi32( _mm256_castsi256_si128(sse_reg), _mm256_extractf128_si256(sse_reg, 1)); // sum upper and lower 64 bits together and convert up to 32 bit values const __m128i sum_reg_64 = _mm_add_epi16(sum_reg_128, _mm_srli_si128(sum_reg_128, 8)); const __m128i sum_int32 = _mm_cvtepi16_epi32(sum_reg_64); // unpack sse and sum registers and add const __m128i sse_sum_lo = _mm_unpacklo_epi32(sse_reg_128, sum_int32); const __m128i sse_sum_hi = _mm_unpackhi_epi32(sse_reg_128, sum_int32); const __m128i sse_sum = _mm_add_epi32(sse_sum_lo, sse_sum_hi); // perform the final summation and extract the results const __m128i res = _mm_add_epi32(sse_sum, _mm_srli_si128(sse_sum, 8)); *((int *)sse) = _mm_cvtsi128_si32(res); *((int *)sum) = _mm_extract_epi32(res, 1); } } #define FILTER_SRC(filter) \ /* filter the source */ \ exp_src_lo = _mm256_maddubs_epi16(exp_src_lo, filter); \ exp_src_hi = _mm256_maddubs_epi16(exp_src_hi, filter); \ \ /* add 8 to source */ \ exp_src_lo = _mm256_add_epi16(exp_src_lo, pw8); \ exp_src_hi = _mm256_add_epi16(exp_src_hi, pw8); \ \ /* divide source by 16 */ \ exp_src_lo = _mm256_srai_epi16(exp_src_lo, 4); \ exp_src_hi = _mm256_srai_epi16(exp_src_hi, 4); #define CALC_SUM_SSE_INSIDE_LOOP \ /* expand each byte to 2 bytes */ \ exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg); \ exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg); \ /* source - dest */ \ exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo); \ exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi); \ /* caculate sum */ \ *sum_reg = _mm256_add_epi16(*sum_reg, exp_src_lo); \ exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo); \ *sum_reg = _mm256_add_epi16(*sum_reg, exp_src_hi); \ exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi); \ /* calculate sse */ \ *sse_reg = _mm256_add_epi32(*sse_reg, exp_src_lo); \ *sse_reg = _mm256_add_epi32(*sse_reg, exp_src_hi); // final calculation to sum and sse #define CALC_SUM_AND_SSE \ res_cmp = _mm256_cmpgt_epi16(zero_reg, sum_reg); \ sse_reg_hi = _mm256_srli_si256(sse_reg, 8); \ sum_reg_lo = _mm256_unpacklo_epi16(sum_reg, res_cmp); \ sum_reg_hi = _mm256_unpackhi_epi16(sum_reg, res_cmp); \ sse_reg = _mm256_add_epi32(sse_reg, sse_reg_hi); \ sum_reg = _mm256_add_epi32(sum_reg_lo, sum_reg_hi); \ \ sse_reg_hi = _mm256_srli_si256(sse_reg, 4); \ sum_reg_hi = _mm256_srli_si256(sum_reg, 8); \ \ sse_reg = _mm256_add_epi32(sse_reg, sse_reg_hi); \ sum_reg = _mm256_add_epi32(sum_reg, sum_reg_hi); \ *((int *)sse) = _mm_cvtsi128_si32(_mm256_castsi256_si128(sse_reg)) + \ _mm_cvtsi128_si32(_mm256_extractf128_si256(sse_reg, 1)); \ sum_reg_hi = _mm256_srli_si256(sum_reg, 4); \ sum_reg = _mm256_add_epi32(sum_reg, sum_reg_hi); \ sum = _mm_cvtsi128_si32(_mm256_castsi256_si128(sum_reg)) + \ _mm_cvtsi128_si32(_mm256_extractf128_si256(sum_reg, 1)); static INLINE void spv32_x0_y0(const uint8_t *src, int src_stride, const uint8_t *dst, int dst_stride, const uint8_t *sec, int sec_stride, int do_sec, int height, __m256i *sum_reg, __m256i *sse_reg) { const __m256i zero_reg = _mm256_setzero_si256(); __m256i exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi; int i; for (i = 0; i < height; i++) { const __m256i dst_reg = _mm256_loadu_si256((__m256i const *)dst); const __m256i src_reg = _mm256_loadu_si256((__m256i const *)src); if (do_sec) { const __m256i sec_reg = _mm256_loadu_si256((__m256i const *)sec); const __m256i avg_reg = _mm256_avg_epu8(src_reg, sec_reg); exp_src_lo = _mm256_unpacklo_epi8(avg_reg, zero_reg); exp_src_hi = _mm256_unpackhi_epi8(avg_reg, zero_reg); sec += sec_stride; } else { exp_src_lo = _mm256_unpacklo_epi8(src_reg, zero_reg); exp_src_hi = _mm256_unpackhi_epi8(src_reg, zero_reg); } CALC_SUM_SSE_INSIDE_LOOP src += src_stride; dst += dst_stride; } } // (x == 0, y == 4) or (x == 4, y == 0). sstep determines the direction. static INLINE void spv32_half_zero(const uint8_t *src, int src_stride, const uint8_t *dst, int dst_stride, const uint8_t *sec, int sec_stride, int do_sec, int height, __m256i *sum_reg, __m256i *sse_reg, int sstep) { const __m256i zero_reg = _mm256_setzero_si256(); __m256i exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi; int i; for (i = 0; i < height; i++) { const __m256i dst_reg = _mm256_loadu_si256((__m256i const *)dst); const __m256i src_0 = _mm256_loadu_si256((__m256i const *)src); const __m256i src_1 = _mm256_loadu_si256((__m256i const *)(src + sstep)); const __m256i src_avg = _mm256_avg_epu8(src_0, src_1); if (do_sec) { const __m256i sec_reg = _mm256_loadu_si256((__m256i const *)sec); const __m256i avg_reg = _mm256_avg_epu8(src_avg, sec_reg); exp_src_lo = _mm256_unpacklo_epi8(avg_reg, zero_reg); exp_src_hi = _mm256_unpackhi_epi8(avg_reg, zero_reg); sec += sec_stride; } else { exp_src_lo = _mm256_unpacklo_epi8(src_avg, zero_reg); exp_src_hi = _mm256_unpackhi_epi8(src_avg, zero_reg); } CALC_SUM_SSE_INSIDE_LOOP src += src_stride; dst += dst_stride; } } static INLINE void spv32_x0_y4(const uint8_t *src, int src_stride, const uint8_t *dst, int dst_stride, const uint8_t *sec, int sec_stride, int do_sec, int height, __m256i *sum_reg, __m256i *sse_reg) { spv32_half_zero(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, height, sum_reg, sse_reg, src_stride); } static INLINE void spv32_x4_y0(const uint8_t *src, int src_stride, const uint8_t *dst, int dst_stride, const uint8_t *sec, int sec_stride, int do_sec, int height, __m256i *sum_reg, __m256i *sse_reg) { spv32_half_zero(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, height, sum_reg, sse_reg, 1); } static INLINE void spv32_x4_y4(const uint8_t *src, int src_stride, const uint8_t *dst, int dst_stride, const uint8_t *sec, int sec_stride, int do_sec, int height, __m256i *sum_reg, __m256i *sse_reg) { const __m256i zero_reg = _mm256_setzero_si256(); const __m256i src_a = _mm256_loadu_si256((__m256i const *)src); const __m256i src_b = _mm256_loadu_si256((__m256i const *)(src + 1)); __m256i prev_src_avg = _mm256_avg_epu8(src_a, src_b); __m256i exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi; int i; src += src_stride; for (i = 0; i < height; i++) { const __m256i dst_reg = _mm256_loadu_si256((__m256i const *)dst); const __m256i src_0 = _mm256_loadu_si256((__m256i const *)(src)); const __m256i src_1 = _mm256_loadu_si256((__m256i const *)(src + 1)); const __m256i src_avg = _mm256_avg_epu8(src_0, src_1); const __m256i current_avg = _mm256_avg_epu8(prev_src_avg, src_avg); prev_src_avg = src_avg; if (do_sec) { const __m256i sec_reg = _mm256_loadu_si256((__m256i const *)sec); const __m256i avg_reg = _mm256_avg_epu8(current_avg, sec_reg); exp_src_lo = _mm256_unpacklo_epi8(avg_reg, zero_reg); exp_src_hi = _mm256_unpackhi_epi8(avg_reg, zero_reg); sec += sec_stride; } else { exp_src_lo = _mm256_unpacklo_epi8(current_avg, zero_reg); exp_src_hi = _mm256_unpackhi_epi8(current_avg, zero_reg); } // save current source average CALC_SUM_SSE_INSIDE_LOOP dst += dst_stride; src += src_stride; } } // (x == 0, y == bil) or (x == 4, y == bil). sstep determines the direction. static INLINE void spv32_bilin_zero(const uint8_t *src, int src_stride, const uint8_t *dst, int dst_stride, const uint8_t *sec, int sec_stride, int do_sec, int height, __m256i *sum_reg, __m256i *sse_reg, int offset, int sstep) { const __m256i zero_reg = _mm256_setzero_si256(); const __m256i pw8 = _mm256_set1_epi16(8); const __m256i filter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + (offset << 5))); __m256i exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi; int i; for (i = 0; i < height; i++) { const __m256i dst_reg = _mm256_loadu_si256((__m256i const *)dst); const __m256i src_0 = _mm256_loadu_si256((__m256i const *)src); const __m256i src_1 = _mm256_loadu_si256((__m256i const *)(src + sstep)); exp_src_lo = _mm256_unpacklo_epi8(src_0, src_1); exp_src_hi = _mm256_unpackhi_epi8(src_0, src_1); FILTER_SRC(filter) if (do_sec) { const __m256i sec_reg = _mm256_loadu_si256((__m256i const *)sec); const __m256i exp_src = _mm256_packus_epi16(exp_src_lo, exp_src_hi); const __m256i avg_reg = _mm256_avg_epu8(exp_src, sec_reg); sec += sec_stride; exp_src_lo = _mm256_unpacklo_epi8(avg_reg, zero_reg); exp_src_hi = _mm256_unpackhi_epi8(avg_reg, zero_reg); } CALC_SUM_SSE_INSIDE_LOOP src += src_stride; dst += dst_stride; } } static INLINE void spv32_x0_yb(const uint8_t *src, int src_stride, const uint8_t *dst, int dst_stride, const uint8_t *sec, int sec_stride, int do_sec, int height, __m256i *sum_reg, __m256i *sse_reg, int y_offset) { spv32_bilin_zero(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, height, sum_reg, sse_reg, y_offset, src_stride); } static INLINE void spv32_xb_y0(const uint8_t *src, int src_stride, const uint8_t *dst, int dst_stride, const uint8_t *sec, int sec_stride, int do_sec, int height, __m256i *sum_reg, __m256i *sse_reg, int x_offset) { spv32_bilin_zero(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, height, sum_reg, sse_reg, x_offset, 1); } static INLINE void spv32_x4_yb(const uint8_t *src, int src_stride, const uint8_t *dst, int dst_stride, const uint8_t *sec, int sec_stride, int do_sec, int height, __m256i *sum_reg, __m256i *sse_reg, int y_offset) { const __m256i zero_reg = _mm256_setzero_si256(); const __m256i pw8 = _mm256_set1_epi16(8); const __m256i filter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + (y_offset << 5))); const __m256i src_a = _mm256_loadu_si256((__m256i const *)src); const __m256i src_b = _mm256_loadu_si256((__m256i const *)(src + 1)); __m256i prev_src_avg = _mm256_avg_epu8(src_a, src_b); __m256i exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi; int i; src += src_stride; for (i = 0; i < height; i++) { const __m256i dst_reg = _mm256_loadu_si256((__m256i const *)dst); const __m256i src_0 = _mm256_loadu_si256((__m256i const *)src); const __m256i src_1 = _mm256_loadu_si256((__m256i const *)(src + 1)); const __m256i src_avg = _mm256_avg_epu8(src_0, src_1); exp_src_lo = _mm256_unpacklo_epi8(prev_src_avg, src_avg); exp_src_hi = _mm256_unpackhi_epi8(prev_src_avg, src_avg); prev_src_avg = src_avg; FILTER_SRC(filter) if (do_sec) { const __m256i sec_reg = _mm256_loadu_si256((__m256i const *)sec); const __m256i exp_src_avg = _mm256_packus_epi16(exp_src_lo, exp_src_hi); const __m256i avg_reg = _mm256_avg_epu8(exp_src_avg, sec_reg); exp_src_lo = _mm256_unpacklo_epi8(avg_reg, zero_reg); exp_src_hi = _mm256_unpackhi_epi8(avg_reg, zero_reg); sec += sec_stride; } CALC_SUM_SSE_INSIDE_LOOP dst += dst_stride; src += src_stride; } } static INLINE void spv32_xb_y4(const uint8_t *src, int src_stride, const uint8_t *dst, int dst_stride, const uint8_t *sec, int sec_stride, int do_sec, int height, __m256i *sum_reg, __m256i *sse_reg, int x_offset) { const __m256i zero_reg = _mm256_setzero_si256(); const __m256i pw8 = _mm256_set1_epi16(8); const __m256i filter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + (x_offset << 5))); const __m256i src_a = _mm256_loadu_si256((__m256i const *)src); const __m256i src_b = _mm256_loadu_si256((__m256i const *)(src + 1)); __m256i exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi; __m256i src_reg, src_pack; int i; exp_src_lo = _mm256_unpacklo_epi8(src_a, src_b); exp_src_hi = _mm256_unpackhi_epi8(src_a, src_b); FILTER_SRC(filter) // convert each 16 bit to 8 bit to each low and high lane source src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi); src += src_stride; for (i = 0; i < height; i++) { const __m256i dst_reg = _mm256_loadu_si256((__m256i const *)dst); const __m256i src_0 = _mm256_loadu_si256((__m256i const *)src); const __m256i src_1 = _mm256_loadu_si256((__m256i const *)(src + 1)); exp_src_lo = _mm256_unpacklo_epi8(src_0, src_1); exp_src_hi = _mm256_unpackhi_epi8(src_0, src_1); FILTER_SRC(filter) src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi); // average between previous pack to the current src_pack = _mm256_avg_epu8(src_pack, src_reg); if (do_sec) { const __m256i sec_reg = _mm256_loadu_si256((__m256i const *)sec); const __m256i avg_pack = _mm256_avg_epu8(src_pack, sec_reg); exp_src_lo = _mm256_unpacklo_epi8(avg_pack, zero_reg); exp_src_hi = _mm256_unpackhi_epi8(avg_pack, zero_reg); sec += sec_stride; } else { exp_src_lo = _mm256_unpacklo_epi8(src_pack, zero_reg); exp_src_hi = _mm256_unpackhi_epi8(src_pack, zero_reg); } CALC_SUM_SSE_INSIDE_LOOP src_pack = src_reg; dst += dst_stride; src += src_stride; } } static INLINE void spv32_xb_yb(const uint8_t *src, int src_stride, const uint8_t *dst, int dst_stride, const uint8_t *sec, int sec_stride, int do_sec, int height, __m256i *sum_reg, __m256i *sse_reg, int x_offset, int y_offset) { const __m256i zero_reg = _mm256_setzero_si256(); const __m256i pw8 = _mm256_set1_epi16(8); const __m256i xfilter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + (x_offset << 5))); const __m256i yfilter = _mm256_load_si256( (__m256i const *)(bilinear_filters_avx2 + (y_offset << 5))); const __m256i src_a = _mm256_loadu_si256((__m256i const *)src); const __m256i src_b = _mm256_loadu_si256((__m256i const *)(src + 1)); __m256i exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi; __m256i prev_src_pack, src_pack; int i; exp_src_lo = _mm256_unpacklo_epi8(src_a, src_b); exp_src_hi = _mm256_unpackhi_epi8(src_a, src_b); FILTER_SRC(xfilter) // convert each 16 bit to 8 bit to each low and high lane source prev_src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi); src += src_stride; for (i = 0; i < height; i++) { const __m256i dst_reg = _mm256_loadu_si256((__m256i const *)dst); const __m256i src_0 = _mm256_loadu_si256((__m256i const *)src); const __m256i src_1 = _mm256_loadu_si256((__m256i const *)(src + 1)); exp_src_lo = _mm256_unpacklo_epi8(src_0, src_1); exp_src_hi = _mm256_unpackhi_epi8(src_0, src_1); FILTER_SRC(xfilter) src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi); // merge previous pack to current pack source exp_src_lo = _mm256_unpacklo_epi8(prev_src_pack, src_pack); exp_src_hi = _mm256_unpackhi_epi8(prev_src_pack, src_pack); FILTER_SRC(yfilter) if (do_sec) { const __m256i sec_reg = _mm256_loadu_si256((__m256i const *)sec); const __m256i exp_src = _mm256_packus_epi16(exp_src_lo, exp_src_hi); const __m256i avg_reg = _mm256_avg_epu8(exp_src, sec_reg); exp_src_lo = _mm256_unpacklo_epi8(avg_reg, zero_reg); exp_src_hi = _mm256_unpackhi_epi8(avg_reg, zero_reg); sec += sec_stride; } prev_src_pack = src_pack; CALC_SUM_SSE_INSIDE_LOOP dst += dst_stride; src += src_stride; } } static INLINE int sub_pix_var32xh(const uint8_t *src, int src_stride, int x_offset, int y_offset, const uint8_t *dst, int dst_stride, const uint8_t *sec, int sec_stride, int do_sec, int height, unsigned int *sse) { const __m256i zero_reg = _mm256_setzero_si256(); __m256i sum_reg = _mm256_setzero_si256(); __m256i sse_reg = _mm256_setzero_si256(); __m256i sse_reg_hi, res_cmp, sum_reg_lo, sum_reg_hi; int sum; // x_offset = 0 and y_offset = 0 if (x_offset == 0) { if (y_offset == 0) { spv32_x0_y0(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, height, &sum_reg, &sse_reg); // x_offset = 0 and y_offset = 4 } else if (y_offset == 4) { spv32_x0_y4(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, height, &sum_reg, &sse_reg); // x_offset = 0 and y_offset = bilin interpolation } else { spv32_x0_yb(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, height, &sum_reg, &sse_reg, y_offset); } // x_offset = 4 and y_offset = 0 } else if (x_offset == 4) { if (y_offset == 0) { spv32_x4_y0(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, height, &sum_reg, &sse_reg); // x_offset = 4 and y_offset = 4 } else if (y_offset == 4) { spv32_x4_y4(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, height, &sum_reg, &sse_reg); // x_offset = 4 and y_offset = bilin interpolation } else { spv32_x4_yb(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, height, &sum_reg, &sse_reg, y_offset); } // x_offset = bilin interpolation and y_offset = 0 } else { if (y_offset == 0) { spv32_xb_y0(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, height, &sum_reg, &sse_reg, x_offset); // x_offset = bilin interpolation and y_offset = 4 } else if (y_offset == 4) { spv32_xb_y4(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, height, &sum_reg, &sse_reg, x_offset); // x_offset = bilin interpolation and y_offset = bilin interpolation } else { spv32_xb_yb(src, src_stride, dst, dst_stride, sec, sec_stride, do_sec, height, &sum_reg, &sse_reg, x_offset, y_offset); } } CALC_SUM_AND_SSE return sum; } static unsigned int sub_pixel_variance32xh_avx2( const uint8_t *src, int src_stride, int x_offset, int y_offset, const uint8_t *dst, int dst_stride, int height, unsigned int *sse) { return sub_pix_var32xh(src, src_stride, x_offset, y_offset, dst, dst_stride, NULL, 0, 0, height, sse); } static unsigned int sub_pixel_avg_variance32xh_avx2( const uint8_t *src, int src_stride, int x_offset, int y_offset, const uint8_t *dst, int dst_stride, const uint8_t *sec, int sec_stride, int height, unsigned int *sse) { return sub_pix_var32xh(src, src_stride, x_offset, y_offset, dst, dst_stride, sec, sec_stride, 1, height, sse); } typedef void (*get_var_avx2)(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse, int *sum); static void variance_avx2(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int w, int h, unsigned int *sse, int *sum, get_var_avx2 var_fn, int block_size) { int i, j; *sse = 0; *sum = 0; for (i = 0; i < h; i += 16) { for (j = 0; j < w; j += block_size) { unsigned int sse0; int sum0; var_fn(&src[src_stride * i + j], src_stride, &ref[ref_stride * i + j], ref_stride, &sse0, &sum0); *sse += sse0; *sum += sum0; } } } unsigned int vpx_variance16x16_avx2(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse) { int sum; variance_avx2(src, src_stride, ref, ref_stride, 16, 16, sse, &sum, vpx_get16x16var_avx2, 16); return *sse - (uint32_t)(((int64_t)sum * sum) >> 8); } unsigned int vpx_mse16x16_avx2(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse) { int sum; vpx_get16x16var_avx2(src, src_stride, ref, ref_stride, sse, &sum); return *sse; } unsigned int vpx_variance32x16_avx2(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse) { int sum; variance_avx2(src, src_stride, ref, ref_stride, 32, 16, sse, &sum, get32x16var_avx2, 32); return *sse - (uint32_t)(((int64_t)sum * sum) >> 9); } unsigned int vpx_variance32x32_avx2(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse) { int sum; variance_avx2(src, src_stride, ref, ref_stride, 32, 32, sse, &sum, get32x16var_avx2, 32); return *sse - (uint32_t)(((int64_t)sum * sum) >> 10); } unsigned int vpx_variance64x64_avx2(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse) { int sum; variance_avx2(src, src_stride, ref, ref_stride, 64, 64, sse, &sum, get32x16var_avx2, 32); return *sse - (uint32_t)(((int64_t)sum * sum) >> 12); } unsigned int vpx_variance64x32_avx2(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, unsigned int *sse) { int sum; variance_avx2(src, src_stride, ref, ref_stride, 64, 32, sse, &sum, get32x16var_avx2, 32); return *sse - (uint32_t)(((int64_t)sum * sum) >> 11); } unsigned int vpx_sub_pixel_variance64x64_avx2(const uint8_t *src, int src_stride, int x_offset, int y_offset, const uint8_t *dst, int dst_stride, unsigned int *sse) { unsigned int sse1; const int se1 = sub_pixel_variance32xh_avx2( src, src_stride, x_offset, y_offset, dst, dst_stride, 64, &sse1); unsigned int sse2; const int se2 = sub_pixel_variance32xh_avx2(src + 32, src_stride, x_offset, y_offset, dst + 32, dst_stride, 64, &sse2); const int se = se1 + se2; *sse = sse1 + sse2; return *sse - (uint32_t)(((int64_t)se * se) >> 12); } unsigned int vpx_sub_pixel_variance32x32_avx2(const uint8_t *src, int src_stride, int x_offset, int y_offset, const uint8_t *dst, int dst_stride, unsigned int *sse) { const int se = sub_pixel_variance32xh_avx2( src, src_stride, x_offset, y_offset, dst, dst_stride, 32, sse); return *sse - (uint32_t)(((int64_t)se * se) >> 10); } unsigned int vpx_sub_pixel_avg_variance64x64_avx2( const uint8_t *src, int src_stride, int x_offset, int y_offset, const uint8_t *dst, int dst_stride, unsigned int *sse, const uint8_t *sec) { unsigned int sse1; const int se1 = sub_pixel_avg_variance32xh_avx2( src, src_stride, x_offset, y_offset, dst, dst_stride, sec, 64, 64, &sse1); unsigned int sse2; const int se2 = sub_pixel_avg_variance32xh_avx2( src + 32, src_stride, x_offset, y_offset, dst + 32, dst_stride, sec + 32, 64, 64, &sse2); const int se = se1 + se2; *sse = sse1 + sse2; return *sse - (uint32_t)(((int64_t)se * se) >> 12); } unsigned int vpx_sub_pixel_avg_variance32x32_avx2( const uint8_t *src, int src_stride, int x_offset, int y_offset, const uint8_t *dst, int dst_stride, unsigned int *sse, const uint8_t *sec) { // Process 32 elements in parallel. const int se = sub_pixel_avg_variance32xh_avx2( src, src_stride, x_offset, y_offset, dst, dst_stride, sec, 32, 32, sse); return *sse - (uint32_t)(((int64_t)se * se) >> 10); }