ref: 2aacfa1acd016864af0f996193e957286c494603
dir: /vp9/common/vp9_pred_common.h/
/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef VP9_COMMON_VP9_PRED_COMMON_H_ #define VP9_COMMON_VP9_PRED_COMMON_H_ #include "vp9/common/vp9_blockd.h" #include "vp9/common/vp9_onyxc_int.h" #include "vpx_dsp/vpx_dsp_common.h" #ifdef __cplusplus extern "C" { #endif static INLINE int get_segment_id(const VP9_COMMON *cm, const uint8_t *segment_ids, BLOCK_SIZE bsize, int mi_row, int mi_col) { const int mi_offset = mi_row * cm->mi_cols + mi_col; const int bw = num_8x8_blocks_wide_lookup[bsize]; const int bh = num_8x8_blocks_high_lookup[bsize]; const int xmis = VPXMIN(cm->mi_cols - mi_col, bw); const int ymis = VPXMIN(cm->mi_rows - mi_row, bh); int x, y, segment_id = MAX_SEGMENTS; for (y = 0; y < ymis; ++y) for (x = 0; x < xmis; ++x) segment_id = VPXMIN(segment_id, segment_ids[mi_offset + y * cm->mi_cols + x]); assert(segment_id >= 0 && segment_id < MAX_SEGMENTS); return segment_id; } static INLINE int vp9_get_pred_context_seg_id(const MACROBLOCKD *xd) { const MODE_INFO *const above_mi = xd->above_mi; const MODE_INFO *const left_mi = xd->left_mi; const int above_sip = (above_mi != NULL) ? above_mi->seg_id_predicted : 0; const int left_sip = (left_mi != NULL) ? left_mi->seg_id_predicted : 0; return above_sip + left_sip; } static INLINE vpx_prob vp9_get_pred_prob_seg_id(const struct segmentation *seg, const MACROBLOCKD *xd) { return seg->pred_probs[vp9_get_pred_context_seg_id(xd)]; } static INLINE int vp9_get_skip_context(const MACROBLOCKD *xd) { const MODE_INFO *const above_mi = xd->above_mi; const MODE_INFO *const left_mi = xd->left_mi; const int above_skip = (above_mi != NULL) ? above_mi->skip : 0; const int left_skip = (left_mi != NULL) ? left_mi->skip : 0; return above_skip + left_skip; } static INLINE vpx_prob vp9_get_skip_prob(const VP9_COMMON *cm, const MACROBLOCKD *xd) { return cm->fc->skip_probs[vp9_get_skip_context(xd)]; } // Returns a context number for the given MB prediction signal static INLINE int get_pred_context_switchable_interp(const MACROBLOCKD *xd) { // Note: // The mode info data structure has a one element border above and to the // left of the entries corresponding to real macroblocks. // The prediction flags in these dummy entries are initialized to 0. const MODE_INFO *const left_mi = xd->left_mi; const int left_type = left_mi ? left_mi->interp_filter : SWITCHABLE_FILTERS; const MODE_INFO *const above_mi = xd->above_mi; const int above_type = above_mi ? above_mi->interp_filter : SWITCHABLE_FILTERS; if (left_type == above_type) return left_type; else if (left_type == SWITCHABLE_FILTERS) return above_type; else if (above_type == SWITCHABLE_FILTERS) return left_type; else return SWITCHABLE_FILTERS; } // The mode info data structure has a one element border above and to the // left of the entries corresponding to real macroblocks. // The prediction flags in these dummy entries are initialized to 0. // 0 - inter/inter, inter/--, --/inter, --/-- // 1 - intra/inter, inter/intra // 2 - intra/--, --/intra // 3 - intra/intra static INLINE int get_intra_inter_context(const MACROBLOCKD *xd) { const MODE_INFO *const above_mi = xd->above_mi; const MODE_INFO *const left_mi = xd->left_mi; const int has_above = !!above_mi; const int has_left = !!left_mi; if (has_above && has_left) { // both edges available const int above_intra = !is_inter_block(above_mi); const int left_intra = !is_inter_block(left_mi); return left_intra && above_intra ? 3 : left_intra || above_intra; } else if (has_above || has_left) { // one edge available return 2 * !is_inter_block(has_above ? above_mi : left_mi); } return 0; } static INLINE vpx_prob vp9_get_intra_inter_prob(const VP9_COMMON *cm, const MACROBLOCKD *xd) { return cm->fc->intra_inter_prob[get_intra_inter_context(xd)]; } int vp9_get_reference_mode_context(const VP9_COMMON *cm, const MACROBLOCKD *xd); static INLINE vpx_prob vp9_get_reference_mode_prob(const VP9_COMMON *cm, const MACROBLOCKD *xd) { return cm->fc->comp_inter_prob[vp9_get_reference_mode_context(cm, xd)]; } int vp9_get_pred_context_comp_ref_p(const VP9_COMMON *cm, const MACROBLOCKD *xd); static INLINE vpx_prob vp9_get_pred_prob_comp_ref_p(const VP9_COMMON *cm, const MACROBLOCKD *xd) { const int pred_context = vp9_get_pred_context_comp_ref_p(cm, xd); return cm->fc->comp_ref_prob[pred_context]; } int vp9_get_pred_context_single_ref_p1(const MACROBLOCKD *xd); static INLINE vpx_prob vp9_get_pred_prob_single_ref_p1(const VP9_COMMON *cm, const MACROBLOCKD *xd) { return cm->fc->single_ref_prob[vp9_get_pred_context_single_ref_p1(xd)][0]; } int vp9_get_pred_context_single_ref_p2(const MACROBLOCKD *xd); static INLINE vpx_prob vp9_get_pred_prob_single_ref_p2(const VP9_COMMON *cm, const MACROBLOCKD *xd) { return cm->fc->single_ref_prob[vp9_get_pred_context_single_ref_p2(xd)][1]; } // Returns a context number for the given MB prediction signal // The mode info data structure has a one element border above and to the // left of the entries corresponding to real blocks. // The prediction flags in these dummy entries are initialized to 0. static INLINE int get_tx_size_context(const MACROBLOCKD *xd) { const int max_tx_size = max_txsize_lookup[xd->mi[0]->sb_type]; const MODE_INFO *const above_mi = xd->above_mi; const MODE_INFO *const left_mi = xd->left_mi; const int has_above = !!above_mi; const int has_left = !!left_mi; int above_ctx = (has_above && !above_mi->skip) ? (int)above_mi->tx_size : max_tx_size; int left_ctx = (has_left && !left_mi->skip) ? (int)left_mi->tx_size : max_tx_size; if (!has_left) left_ctx = above_ctx; if (!has_above) above_ctx = left_ctx; return (above_ctx + left_ctx) > max_tx_size; } static INLINE const vpx_prob *get_tx_probs(TX_SIZE max_tx_size, int ctx, const struct tx_probs *tx_probs) { switch (max_tx_size) { case TX_8X8: return tx_probs->p8x8[ctx]; case TX_16X16: return tx_probs->p16x16[ctx]; case TX_32X32: return tx_probs->p32x32[ctx]; default: assert(0 && "Invalid max_tx_size."); return NULL; } } static INLINE const vpx_prob *get_tx_probs2(TX_SIZE max_tx_size, const MACROBLOCKD *xd, const struct tx_probs *tx_probs) { return get_tx_probs(max_tx_size, get_tx_size_context(xd), tx_probs); } static INLINE unsigned int *get_tx_counts(TX_SIZE max_tx_size, int ctx, struct tx_counts *tx_counts) { switch (max_tx_size) { case TX_8X8: return tx_counts->p8x8[ctx]; case TX_16X16: return tx_counts->p16x16[ctx]; case TX_32X32: return tx_counts->p32x32[ctx]; default: assert(0 && "Invalid max_tx_size."); return NULL; } } #ifdef __cplusplus } // extern "C" #endif #endif // VP9_COMMON_VP9_PRED_COMMON_H_