ref: 1a4d8f20336195f560e29a2a96def8b3fdedfb54
dir: /vpx_dsp/x86/highbd_idct8x8_add_sse2.c/
/* * Copyright (c) 2015 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./vpx_dsp_rtcd.h" #include "vpx_dsp/x86/highbd_inv_txfm_sse2.h" #include "vpx_dsp/x86/inv_txfm_sse2.h" #include "vpx_dsp/x86/transpose_sse2.h" #include "vpx_dsp/x86/txfm_common_sse2.h" void vpx_highbd_idct8x8_64_add_sse2(const tran_low_t *input, uint16_t *dest, int stride, int bd) { tran_low_t out[8 * 8]; tran_low_t *outptr = out; int i, j, test; __m128i inptr[8]; __m128i min_input, max_input, temp1, temp2, sign_bits; const __m128i zero = _mm_set1_epi16(0); const __m128i sixteen = _mm_set1_epi16(16); const __m128i max = _mm_set1_epi16(6201); const __m128i min = _mm_set1_epi16(-6201); int optimised_cols = 0; // Load input into __m128i & pack to 16 bits for (i = 0; i < 8; i++) { temp1 = _mm_loadu_si128((const __m128i *)(input + 8 * i)); temp2 = _mm_loadu_si128((const __m128i *)(input + 8 * i + 4)); inptr[i] = _mm_packs_epi32(temp1, temp2); } // Find the min & max for the row transform max_input = _mm_max_epi16(inptr[0], inptr[1]); min_input = _mm_min_epi16(inptr[0], inptr[1]); for (i = 2; i < 8; i++) { max_input = _mm_max_epi16(max_input, inptr[i]); min_input = _mm_min_epi16(min_input, inptr[i]); } max_input = _mm_cmpgt_epi16(max_input, max); min_input = _mm_cmplt_epi16(min_input, min); temp1 = _mm_or_si128(max_input, min_input); test = _mm_movemask_epi8(temp1); if (!test) { // Do the row transform idct8_sse2(inptr); // Find the min & max for the column transform max_input = _mm_max_epi16(inptr[0], inptr[1]); min_input = _mm_min_epi16(inptr[0], inptr[1]); for (i = 2; i < 8; i++) { max_input = _mm_max_epi16(max_input, inptr[i]); min_input = _mm_min_epi16(min_input, inptr[i]); } max_input = _mm_cmpgt_epi16(max_input, max); min_input = _mm_cmplt_epi16(min_input, min); temp1 = _mm_or_si128(max_input, min_input); test = _mm_movemask_epi8(temp1); if (test) { transpose_16bit_8x8(inptr, inptr); for (i = 0; i < 8; i++) { sign_bits = _mm_cmplt_epi16(inptr[i], zero); temp1 = _mm_unpackhi_epi16(inptr[i], sign_bits); temp2 = _mm_unpacklo_epi16(inptr[i], sign_bits); _mm_storeu_si128((__m128i *)(outptr + 4 * (2 * i + 1)), temp1); _mm_storeu_si128((__m128i *)(outptr + 4 * (2 * i)), temp2); } } else { // Set to use the optimised transform for the column optimised_cols = 1; } } else { // Run the un-optimised row transform for (i = 0; i < 8; ++i) { vpx_highbd_idct8_c(input, outptr, bd); input += 8; outptr += 8; } } if (optimised_cols) { idct8_sse2(inptr); // Final round & shift and Reconstruction and Store { __m128i d[8]; for (i = 0; i < 8; i++) { inptr[i] = _mm_add_epi16(inptr[i], sixteen); d[i] = _mm_loadu_si128((const __m128i *)(dest + stride * i)); inptr[i] = _mm_srai_epi16(inptr[i], 5); d[i] = add_clamp(d[i], inptr[i], bd); // Store _mm_storeu_si128((__m128i *)(dest + stride * i), d[i]); } } } else { // Run the un-optimised column transform tran_low_t temp_in[8], temp_out[8]; for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; vpx_highbd_idct8_c(temp_in, temp_out, bd); for (j = 0; j < 8; ++j) { dest[j * stride + i] = highbd_clip_pixel_add( dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5), bd); } } } } void vpx_highbd_idct8x8_12_add_sse2(const tran_low_t *input, uint16_t *dest, int stride, int bd) { tran_low_t out[8 * 8] = { 0 }; tran_low_t *outptr = out; int i, j, test; __m128i inptr[8]; __m128i min_input, max_input, temp1, temp2, sign_bits; const __m128i zero = _mm_set1_epi16(0); const __m128i sixteen = _mm_set1_epi16(16); const __m128i max = _mm_set1_epi16(6201); const __m128i min = _mm_set1_epi16(-6201); int optimised_cols = 0; // Load input into __m128i & pack to 16 bits for (i = 0; i < 8; i++) { temp1 = _mm_loadu_si128((const __m128i *)(input + 8 * i)); temp2 = _mm_loadu_si128((const __m128i *)(input + 8 * i + 4)); inptr[i] = _mm_packs_epi32(temp1, temp2); } // Find the min & max for the row transform // only first 4 row has non-zero coefs max_input = _mm_max_epi16(inptr[0], inptr[1]); min_input = _mm_min_epi16(inptr[0], inptr[1]); for (i = 2; i < 4; i++) { max_input = _mm_max_epi16(max_input, inptr[i]); min_input = _mm_min_epi16(min_input, inptr[i]); } max_input = _mm_cmpgt_epi16(max_input, max); min_input = _mm_cmplt_epi16(min_input, min); temp1 = _mm_or_si128(max_input, min_input); test = _mm_movemask_epi8(temp1); if (!test) { // Do the row transform idct8_sse2(inptr); // Find the min & max for the column transform // N.B. Only first 4 cols contain non-zero coeffs max_input = _mm_max_epi16(inptr[0], inptr[1]); min_input = _mm_min_epi16(inptr[0], inptr[1]); for (i = 2; i < 8; i++) { max_input = _mm_max_epi16(max_input, inptr[i]); min_input = _mm_min_epi16(min_input, inptr[i]); } max_input = _mm_cmpgt_epi16(max_input, max); min_input = _mm_cmplt_epi16(min_input, min); temp1 = _mm_or_si128(max_input, min_input); test = _mm_movemask_epi8(temp1); if (test) { // Use fact only first 4 rows contain non-zero coeffs transpose_16bit_4x8(inptr, inptr); for (i = 0; i < 4; i++) { sign_bits = _mm_cmplt_epi16(inptr[i], zero); temp1 = _mm_unpackhi_epi16(inptr[i], sign_bits); temp2 = _mm_unpacklo_epi16(inptr[i], sign_bits); _mm_storeu_si128((__m128i *)(outptr + 4 * (2 * i + 1)), temp1); _mm_storeu_si128((__m128i *)(outptr + 4 * (2 * i)), temp2); } } else { // Set to use the optimised transform for the column optimised_cols = 1; } } else { // Run the un-optimised row transform for (i = 0; i < 4; ++i) { vpx_highbd_idct8_c(input, outptr, bd); input += 8; outptr += 8; } } if (optimised_cols) { idct8_sse2(inptr); // Final round & shift and Reconstruction and Store { __m128i d[8]; for (i = 0; i < 8; i++) { inptr[i] = _mm_add_epi16(inptr[i], sixteen); d[i] = _mm_loadu_si128((const __m128i *)(dest + stride * i)); inptr[i] = _mm_srai_epi16(inptr[i], 5); d[i] = add_clamp(d[i], inptr[i], bd); // Store _mm_storeu_si128((__m128i *)(dest + stride * i), d[i]); } } } else { // Run the un-optimised column transform tran_low_t temp_in[8], temp_out[8]; for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; vpx_highbd_idct8_c(temp_in, temp_out, bd); for (j = 0; j < 8; ++j) { dest[j * stride + i] = highbd_clip_pixel_add( dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5), bd); } } } } void vpx_highbd_idct8x8_1_add_sse2(const tran_low_t *input, uint16_t *dest, int stride, int bd) { highbd_idct_1_add_kernel(input, dest, stride, bd, 8); }