shithub: libvpx

ref: 119c9812a5a2abef08c5b62a5f8b031d924533f8
dir: /vp9/decoder/vp9_decodemv.c/

View raw version
/*
  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */


#include "vp9/decoder/vp9_treereader.h"
#include "vp9/common/vp9_entropymv.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/decoder/vp9_onyxd_int.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/decoder/vp9_decodemv.h"
#include "vp9/decoder/vp9_decodframe.h"
#include "vp9/common/vp9_mvref_common.h"
#if CONFIG_DEBUG
#include <assert.h>
#endif

// #define DEBUG_DEC_MV
#ifdef DEBUG_DEC_MV
int dec_mvcount = 0;
#endif

// #define DEC_DEBUG
#ifdef DEC_DEBUG
extern int dec_debug;
#endif

static MB_PREDICTION_MODE read_intra_mode(vp9_reader *r, const vp9_prob *p) {
  MB_PREDICTION_MODE m = treed_read(r, vp9_intra_mode_tree, p);
  return m;
}

static int read_mb_segid(vp9_reader *r, MACROBLOCKD *xd) {
  return treed_read(r, vp9_segment_tree, xd->mb_segment_tree_probs);
}

static void set_segment_id(VP9_COMMON *cm, MB_MODE_INFO *mbmi,
                           int mi_row, int mi_col, int segment_id) {
  const int mi_index = mi_row * cm->mi_cols + mi_col;
  const BLOCK_SIZE_TYPE sb_type = mbmi->sb_type;
  const int bw = 1 << mi_width_log2(sb_type);
  const int bh = 1 << mi_height_log2(sb_type);
  const int ymis = MIN(cm->mi_rows - mi_row, bh);
  const int xmis = MIN(cm->mi_cols - mi_col, bw);
  int x, y;

  for (y = 0; y < ymis; y++) {
    for (x = 0; x < xmis; x++) {
      const int index = mi_index + (y * cm->mi_cols + x);
      cm->last_frame_seg_map[index] = segment_id;
    }
  }
}

static TX_SIZE select_txfm_size(VP9_COMMON *cm, MACROBLOCKD *xd,
                                vp9_reader *r, BLOCK_SIZE_TYPE bsize) {
  const int context = vp9_get_pred_context(cm, xd, PRED_TX_SIZE);
  const vp9_prob *tx_probs = vp9_get_pred_probs(cm, xd, PRED_TX_SIZE);
  TX_SIZE txfm_size = vp9_read(r, tx_probs[0]);
  if (txfm_size != TX_4X4 && bsize >= BLOCK_SIZE_MB16X16) {
    txfm_size += vp9_read(r, tx_probs[1]);
    if (txfm_size != TX_8X8 && bsize >= BLOCK_SIZE_SB32X32)
      txfm_size += vp9_read(r, tx_probs[2]);
  }
  if (bsize >= BLOCK_SIZE_SB32X32) {
    cm->fc.tx_count_32x32p[context][txfm_size]++;
  } else if (bsize >= BLOCK_SIZE_MB16X16) {
    cm->fc.tx_count_16x16p[context][txfm_size]++;
  } else {
    cm->fc.tx_count_8x8p[context][txfm_size]++;
  }
  return txfm_size;
}


static void kfread_modes(VP9D_COMP *pbi, MODE_INFO *m,
                         int mi_row, int mi_col,
                         vp9_reader *r) {
  VP9_COMMON *const cm = &pbi->common;
  MACROBLOCKD *const xd = &pbi->mb;
  const int mis = cm->mode_info_stride;

  // Read segmentation map if it is being updated explicitly this frame
  m->mbmi.segment_id = 0;
  if (xd->segmentation_enabled && xd->update_mb_segmentation_map) {
    m->mbmi.segment_id = read_mb_segid(r, xd);
    set_segment_id(cm, &m->mbmi, mi_row, mi_col, m->mbmi.segment_id);
  }

  m->mbmi.mb_skip_coeff = vp9_segfeature_active(xd, m->mbmi.segment_id,
                                                SEG_LVL_SKIP);
  if (!m->mbmi.mb_skip_coeff) {
    m->mbmi.mb_skip_coeff = vp9_read(r, vp9_get_pred_prob(cm, xd, PRED_MBSKIP));
    cm->fc.mbskip_count[vp9_get_pred_context(cm, xd, PRED_MBSKIP)]
                       [m->mbmi.mb_skip_coeff]++;
  }

  if (cm->txfm_mode == TX_MODE_SELECT &&
      m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) {
    m->mbmi.txfm_size = select_txfm_size(cm, xd, r, m->mbmi.sb_type);
  } else if (cm->txfm_mode >= ALLOW_32X32 &&
             m->mbmi.sb_type >= BLOCK_SIZE_SB32X32) {
    m->mbmi.txfm_size = TX_32X32;
  } else if (cm->txfm_mode >= ALLOW_16X16 &&
             m->mbmi.sb_type >= BLOCK_SIZE_MB16X16) {
    m->mbmi.txfm_size = TX_16X16;
  } else if (cm->txfm_mode >= ALLOW_8X8 &&
             m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) {
    m->mbmi.txfm_size = TX_8X8;
  } else {
    m->mbmi.txfm_size = TX_4X4;
  }

  // luma mode
  m->mbmi.ref_frame[0] = INTRA_FRAME;
  if (m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) {
    const MB_PREDICTION_MODE A = above_block_mode(m, 0, mis);
    const MB_PREDICTION_MODE L = xd->left_available ?
                                  left_block_mode(m, 0) : DC_PRED;
    m->mbmi.mode = read_intra_mode(r, cm->kf_y_mode_prob[A][L]);
  } else {
    int idx, idy;
    int bw = 1 << b_width_log2(m->mbmi.sb_type);
    int bh = 1 << b_height_log2(m->mbmi.sb_type);

    for (idy = 0; idy < 2; idy += bh) {
      for (idx = 0; idx < 2; idx += bw) {
        int ib = idy * 2 + idx;
        int k;
        const MB_PREDICTION_MODE A = above_block_mode(m, ib, mis);
        const MB_PREDICTION_MODE L = (xd->left_available || idx) ?
                                      left_block_mode(m, ib) : DC_PRED;
        m->bmi[ib].as_mode.first =
            read_intra_mode(r, cm->kf_y_mode_prob[A][L]);
        for (k = 1; k < bh; ++k)
          m->bmi[ib + k * 2].as_mode.first = m->bmi[ib].as_mode.first;
        for (k = 1; k < bw; ++k)
          m->bmi[ib + k].as_mode.first = m->bmi[ib].as_mode.first;
      }
    }
    m->mbmi.mode = m->bmi[3].as_mode.first;
  }

  m->mbmi.uv_mode = read_intra_mode(r, cm->kf_uv_mode_prob[m->mbmi.mode]);
}

static int read_mv_component(vp9_reader *r,
                             const nmv_component *mvcomp, int usehp) {

  int mag, d, fr, hp;
  const int sign = vp9_read(r, mvcomp->sign);
  const int mv_class = treed_read(r, vp9_mv_class_tree, mvcomp->classes);

  // Integer part
  if (mv_class == MV_CLASS_0) {
    d = treed_read(r, vp9_mv_class0_tree, mvcomp->class0);
  } else {
    int i;
    const int n = mv_class + CLASS0_BITS - 1;  // number of bits

    d = 0;
    for (i = 0; i < n; ++i)
      d |= vp9_read(r, mvcomp->bits[i]) << i;
  }

  // Fractional part
  fr = treed_read(r, vp9_mv_fp_tree,
                  mv_class == MV_CLASS_0 ? mvcomp->class0_fp[d] : mvcomp->fp);


  // High precision part (if hp is not used, the default value of the hp is 1)
  hp = usehp ? vp9_read(r,
                        mv_class == MV_CLASS_0 ? mvcomp->class0_hp : mvcomp->hp)
             : 1;

  // result
  mag = vp9_get_mv_mag(mv_class, (d << 3) | (fr << 1) | hp) + 1;
  return sign ? -mag : mag;
}

static void update_nmv(vp9_reader *r, vp9_prob *const p,
                       const vp9_prob upd_p) {
  if (vp9_read(r, upd_p)) {
#ifdef LOW_PRECISION_MV_UPDATE
    *p = (vp9_read_literal(r, 7) << 1) | 1;
#else
    *p = (vp9_read_literal(r, 8));
#endif
  }
}

static void read_nmvprobs(vp9_reader *r, nmv_context *mvctx,
                          int usehp) {
  int i, j, k;

#ifdef MV_GROUP_UPDATE
  if (!vp9_read_bit(r))
    return;
#endif
  for (j = 0; j < MV_JOINTS - 1; ++j)
    update_nmv(r, &mvctx->joints[j], VP9_NMV_UPDATE_PROB);

  for (i = 0; i < 2; ++i) {
    update_nmv(r, &mvctx->comps[i].sign, VP9_NMV_UPDATE_PROB);
    for (j = 0; j < MV_CLASSES - 1; ++j)
      update_nmv(r, &mvctx->comps[i].classes[j], VP9_NMV_UPDATE_PROB);

    for (j = 0; j < CLASS0_SIZE - 1; ++j)
      update_nmv(r, &mvctx->comps[i].class0[j], VP9_NMV_UPDATE_PROB);

    for (j = 0; j < MV_OFFSET_BITS; ++j)
      update_nmv(r, &mvctx->comps[i].bits[j], VP9_NMV_UPDATE_PROB);
  }

  for (i = 0; i < 2; ++i) {
    for (j = 0; j < CLASS0_SIZE; ++j)
      for (k = 0; k < 3; ++k)
        update_nmv(r, &mvctx->comps[i].class0_fp[j][k], VP9_NMV_UPDATE_PROB);

    for (j = 0; j < 3; ++j)
      update_nmv(r, &mvctx->comps[i].fp[j], VP9_NMV_UPDATE_PROB);
  }

  if (usehp) {
    for (i = 0; i < 2; ++i) {
      update_nmv(r, &mvctx->comps[i].class0_hp, VP9_NMV_UPDATE_PROB);
      update_nmv(r, &mvctx->comps[i].hp, VP9_NMV_UPDATE_PROB);
    }
  }
}

// Read the referncence frame
static void read_ref_frame(VP9D_COMP *pbi, vp9_reader *r,
                           int segment_id, MV_REFERENCE_FRAME ref_frame[2]) {
  VP9_COMMON *const cm = &pbi->common;
  MACROBLOCKD *const xd = &pbi->mb;
  const int seg_ref_active = vp9_segfeature_active(xd, segment_id,
                                                   SEG_LVL_REF_FRAME);

  // Segment reference frame features not available.
  if (!seg_ref_active) {
    int is_comp;
    int comp_ctx = vp9_get_pred_context(cm, xd, PRED_COMP_INTER_INTER);

    if (cm->comp_pred_mode == HYBRID_PREDICTION) {
      is_comp = vp9_read(r, cm->fc.comp_inter_prob[comp_ctx]);
      cm->fc.comp_inter_count[comp_ctx][is_comp]++;
    } else {
      is_comp = cm->comp_pred_mode == COMP_PREDICTION_ONLY;
    }

    // FIXME(rbultje) I'm pretty sure this breaks segmentation ref frame coding
    if (is_comp) {
      int b, fix_ref_idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref];
      int ref_ctx = vp9_get_pred_context(cm, xd, PRED_COMP_REF_P);

      ref_frame[fix_ref_idx]  = cm->comp_fixed_ref;
      b = vp9_read(r, cm->fc.comp_ref_prob[ref_ctx]);
      cm->fc.comp_ref_count[ref_ctx][b]++;
      ref_frame[!fix_ref_idx] = cm->comp_var_ref[b];
    } else {
      int ref1_ctx = vp9_get_pred_context(cm, xd, PRED_SINGLE_REF_P1);
      ref_frame[1] = NONE;
      if (vp9_read(r, cm->fc.single_ref_prob[ref1_ctx][0])) {
        int ref2_ctx = vp9_get_pred_context(cm, xd, PRED_SINGLE_REF_P2);
        int b2 = vp9_read(r, cm->fc.single_ref_prob[ref2_ctx][1]);
        ref_frame[0] = b2 ? ALTREF_FRAME : GOLDEN_FRAME;
        cm->fc.single_ref_count[ref1_ctx][0][1]++;
        cm->fc.single_ref_count[ref2_ctx][1][b2]++;
      } else {
        ref_frame[0] = LAST_FRAME;
        cm->fc.single_ref_count[ref1_ctx][0][0]++;
      }
    }
  } else {
    ref_frame[0] = vp9_get_segdata(xd, segment_id, SEG_LVL_REF_FRAME);
    ref_frame[1] = NONE;
  }
}

static MB_PREDICTION_MODE read_sb_mv_ref(vp9_reader *r, const vp9_prob *p) {
  return (MB_PREDICTION_MODE) treed_read(r, vp9_sb_mv_ref_tree, p);
}

#ifdef VPX_MODE_COUNT
unsigned int vp9_mv_cont_count[5][4] = {
  { 0, 0, 0, 0 },
  { 0, 0, 0, 0 },
  { 0, 0, 0, 0 },
  { 0, 0, 0, 0 },
  { 0, 0, 0, 0 }
};
#endif

static void read_switchable_interp_probs(VP9_COMMON* const cm, vp9_reader *r) {
  int i, j;
  for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j)
    for (i = 0; i < VP9_SWITCHABLE_FILTERS - 1; ++i) {
      if (vp9_read(r, VP9_MODE_UPDATE_PROB)) {
        cm->fc.switchable_interp_prob[j][i] =
            // vp9_read_prob(r);
            vp9_read_prob_diff_update(r, cm->fc.switchable_interp_prob[j][i]);
      }
    }
}

static void read_inter_mode_probs(VP9_COMMON *const cm, vp9_reader *r) {
  int i, j;
  for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
    for (j = 0; j < VP9_INTER_MODES - 1; ++j) {
      if (vp9_read(r, VP9_MODE_UPDATE_PROB)) {
        // cm->fc.inter_mode_probs[i][j] = vp9_read_prob(r);
        cm->fc.inter_mode_probs[i][j] =
            vp9_read_prob_diff_update(r, cm->fc.inter_mode_probs[i][j]);
      }
    }
}

static INLINE COMPPREDMODE_TYPE read_comp_pred_mode(vp9_reader *r) {
  COMPPREDMODE_TYPE mode = vp9_read_bit(r);
  if (mode)
     mode += vp9_read_bit(r);
  return mode;
}

static void mb_mode_mv_init(VP9D_COMP *pbi, vp9_reader *r) {
  VP9_COMMON *const cm = &pbi->common;

  if ((cm->frame_type != KEY_FRAME) && (!cm->intra_only)) {
    nmv_context *const nmvc = &pbi->common.fc.nmvc;
    MACROBLOCKD *const xd = &pbi->mb;
    int i, j;

    read_inter_mode_probs(cm, r);

    if (cm->mcomp_filter_type == SWITCHABLE)
      read_switchable_interp_probs(cm, r);

    for (i = 0; i < INTRA_INTER_CONTEXTS; i++) {
      if (vp9_read(r, VP9_MODE_UPDATE_PROB))
        cm->fc.intra_inter_prob[i] =
            vp9_read_prob_diff_update(r, cm->fc.intra_inter_prob[i]);
    }

    if (cm->allow_comp_inter_inter) {
      cm->comp_pred_mode = read_comp_pred_mode(r);
      if (cm->comp_pred_mode == HYBRID_PREDICTION)
        for (i = 0; i < COMP_INTER_CONTEXTS; i++)
          if (vp9_read(r, VP9_MODE_UPDATE_PROB))
            cm->fc.comp_inter_prob[i] =
                vp9_read_prob_diff_update(r, cm->fc.comp_inter_prob[i]);
    } else {
      cm->comp_pred_mode = SINGLE_PREDICTION_ONLY;
    }

    if (cm->comp_pred_mode != COMP_PREDICTION_ONLY)
      for (i = 0; i < REF_CONTEXTS; i++) {
        if (vp9_read(r, VP9_MODE_UPDATE_PROB))
          cm->fc.single_ref_prob[i][0] =
              vp9_read_prob_diff_update(r, cm->fc.single_ref_prob[i][0]);
        if (vp9_read(r, VP9_MODE_UPDATE_PROB))
          cm->fc.single_ref_prob[i][1] =
              vp9_read_prob_diff_update(r, cm->fc.single_ref_prob[i][1]);
      }

    if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY)
      for (i = 0; i < REF_CONTEXTS; i++)
        if (vp9_read(r, VP9_MODE_UPDATE_PROB))
          cm->fc.comp_ref_prob[i] =
              vp9_read_prob_diff_update(r, cm->fc.comp_ref_prob[i]);

    // VP9_INTRA_MODES
    for (j = 0; j < BLOCK_SIZE_GROUPS; j++) {
      for (i = 0; i < VP9_INTRA_MODES - 1; ++i) {
        if (vp9_read(r, VP9_MODE_UPDATE_PROB)) {
          cm->fc.y_mode_prob[j][i] =
              vp9_read_prob_diff_update(r, cm->fc.y_mode_prob[j][i]);
        }
      }
    }
    for (j = 0; j < NUM_PARTITION_CONTEXTS; ++j) {
      for (i = 0; i < PARTITION_TYPES - 1; ++i) {
        if (vp9_read(r, VP9_MODE_UPDATE_PROB)) {
          cm->fc.partition_prob[INTER_FRAME][j][i] =
              vp9_read_prob_diff_update(r,
                  cm->fc.partition_prob[INTER_FRAME][j][i]);
        }
      }
    }

    read_nmvprobs(r, nmvc, xd->allow_high_precision_mv);
  }
}

// This function either reads the segment id for the current macroblock from
// the bitstream or if the value is temporally predicted asserts the predicted
// value
static int read_mb_segment_id(VP9D_COMP *pbi, int mi_row, int mi_col,
                              vp9_reader *r) {
  VP9_COMMON *const cm = &pbi->common;
  MACROBLOCKD *const xd = &pbi->mb;
  MODE_INFO *const mi = xd->mode_info_context;
  MB_MODE_INFO *const mbmi = &mi->mbmi;

  if (!xd->segmentation_enabled)
    return 0;  // Default for disabled segmentation

  if (xd->update_mb_segmentation_map) {
    int segment_id;

    if (cm->temporal_update) {
      // Temporal coding of the segment id for this mb is enabled.
      // Get the context based probability for reading the
      // prediction status flag
      const vp9_prob pred_prob = vp9_get_pred_prob(cm, xd, PRED_SEG_ID);
      const int pred_flag = vp9_read(r, pred_prob);
      vp9_set_pred_flag(xd, PRED_SEG_ID, pred_flag);

      // If the value is flagged as correctly predicted
      // then use the predicted value, otherwise decode it explicitly
      segment_id = pred_flag ? vp9_get_pred_mi_segid(cm, mbmi->sb_type,
                                                     mi_row, mi_col)
                             : read_mb_segid(r, xd);
    } else {
      segment_id = read_mb_segid(r, xd);  // Normal unpredicted coding mode
    }

    set_segment_id(cm, mbmi, mi_row, mi_col, segment_id);  // Side effect
    return segment_id;
  } else {
    return vp9_get_pred_mi_segid(cm, mbmi->sb_type, mi_row, mi_col);
  }
}


static INLINE void assign_and_clamp_mv(int_mv *dst, const int_mv *src,
                                       int mb_to_left_edge,
                                       int mb_to_right_edge,
                                       int mb_to_top_edge,
                                       int mb_to_bottom_edge) {
  dst->as_int = src->as_int;
  clamp_mv(dst, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge,
           mb_to_bottom_edge);
}

static INLINE void decode_mv(vp9_reader *r, MV *mv, const MV *ref,
                             const nmv_context *ctx,
                             nmv_context_counts *counts,
                             int usehp) {
  const MV_JOINT_TYPE j = treed_read(r, vp9_mv_joint_tree, ctx->joints);
  MV diff = {0, 0};

  usehp = usehp && vp9_use_nmv_hp(ref);
  if (mv_joint_vertical(j))
    diff.row = read_mv_component(r, &ctx->comps[0], usehp);

  if (mv_joint_horizontal(j))
    diff.col = read_mv_component(r, &ctx->comps[1], usehp);

  vp9_increment_nmv(&diff, ref, counts, usehp);

  mv->row = diff.row + ref->row;
  mv->col = diff.col + ref->col;
}

static INLINE INTERPOLATIONFILTERTYPE read_switchable_filter_type(
    VP9D_COMP *pbi, vp9_reader *r) {
  const int index = treed_read(r, vp9_switchable_interp_tree,
                               vp9_get_pred_probs(&pbi->common, &pbi->mb,
                                                  PRED_SWITCHABLE_INTERP));
  ++pbi->common.fc.switchable_interp_count
                [vp9_get_pred_context(
                    &pbi->common, &pbi->mb, PRED_SWITCHABLE_INTERP)][index];
  return vp9_switchable_interp[index];
}

static void read_mb_modes_mv(VP9D_COMP *pbi, MODE_INFO *mi, MB_MODE_INFO *mbmi,
                             int mi_row, int mi_col,
                             vp9_reader *r) {
  VP9_COMMON *const cm = &pbi->common;
  nmv_context *const nmvc = &cm->fc.nmvc;
  MACROBLOCKD *const xd = &pbi->mb;

  int_mv *const mv0 = &mbmi->mv[0];
  int_mv *const mv1 = &mbmi->mv[1];
  BLOCK_SIZE_TYPE bsize = mi->mbmi.sb_type;
  int bw = 1 << b_width_log2(bsize);
  int bh = 1 << b_height_log2(bsize);

  int mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge;
  int j, idx, idy;

  mbmi->need_to_clamp_mvs = 0;
  mbmi->need_to_clamp_secondmv = 0;
  mbmi->ref_frame[1] = NONE;

  // Make sure the MACROBLOCKD mode info pointer is pointed at the
  // correct entry for the current macroblock.
  xd->mode_info_context = mi;

  // Distance of Mb to the various image edges.
  // These specified to 8th pel as they are always compared to MV values
  // that are in 1/8th pel units
  set_mi_row_col(cm, xd, mi_row, 1 << mi_height_log2(bsize),
                         mi_col, 1 << mi_width_log2(bsize));

  mb_to_top_edge = xd->mb_to_top_edge - LEFT_TOP_MARGIN;
  mb_to_bottom_edge = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN;
  mb_to_left_edge = xd->mb_to_left_edge - LEFT_TOP_MARGIN;
  mb_to_right_edge = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN;

  // Read the macroblock segment id.
  mbmi->segment_id = read_mb_segment_id(pbi, mi_row, mi_col, r);

  mbmi->mb_skip_coeff = vp9_segfeature_active(xd, mbmi->segment_id,
                                              SEG_LVL_SKIP);
  if (!mbmi->mb_skip_coeff) {
    mbmi->mb_skip_coeff = vp9_read(r, vp9_get_pred_prob(cm, xd, PRED_MBSKIP));
    cm->fc.mbskip_count[vp9_get_pred_context(cm, xd, PRED_MBSKIP)]
                       [mbmi->mb_skip_coeff]++;
  }

  // Read the reference frame
  if (!vp9_segfeature_active(xd, mbmi->segment_id, SEG_LVL_REF_FRAME)) {
    mbmi->ref_frame[0] =
        vp9_read(r, vp9_get_pred_prob(cm, xd, PRED_INTRA_INTER));
    cm->fc.intra_inter_count[vp9_get_pred_context(cm, xd, PRED_INTRA_INTER)]
                            [mbmi->ref_frame[0] != INTRA_FRAME]++;
  } else {
    mbmi->ref_frame[0] =
        vp9_get_segdata(xd, mbmi->segment_id, SEG_LVL_REF_FRAME) != INTRA_FRAME;
  }

  if (cm->txfm_mode == TX_MODE_SELECT &&
      (mbmi->mb_skip_coeff == 0 || mbmi->ref_frame[0] == INTRA_FRAME) &&
      bsize >= BLOCK_SIZE_SB8X8) {
    mbmi->txfm_size = select_txfm_size(cm, xd, r, bsize);
  } else if (bsize >= BLOCK_SIZE_SB32X32 &&
             cm->txfm_mode >= ALLOW_32X32) {
    mbmi->txfm_size = TX_32X32;
  } else if (cm->txfm_mode >= ALLOW_16X16 &&
             bsize >= BLOCK_SIZE_MB16X16) {
    mbmi->txfm_size = TX_16X16;
  } else if (cm->txfm_mode >= ALLOW_8X8 && (bsize >= BLOCK_SIZE_SB8X8)) {
    mbmi->txfm_size = TX_8X8;
  } else {
    mbmi->txfm_size = TX_4X4;
  }

  // If reference frame is an Inter frame
  if (mbmi->ref_frame[0] != INTRA_FRAME) {
    int_mv nearest, nearby, best_mv;
    int_mv nearest_second, nearby_second, best_mv_second;
    vp9_prob mv_ref_p[VP9_INTER_MODES - 1];

    read_ref_frame(pbi, r, mbmi->segment_id, mbmi->ref_frame);

    {
#ifdef DEC_DEBUG
      if (dec_debug)
        printf("%d %d\n", xd->mode_info_context->mbmi.mv[0].as_mv.row,
               xd->mode_info_context->mbmi.mv[0].as_mv.col);
#endif
      vp9_find_mv_refs(cm, xd, mi, xd->prev_mode_info_context,
                       mbmi->ref_frame[0], mbmi->ref_mvs[mbmi->ref_frame[0]],
                       cm->ref_frame_sign_bias);

      vp9_mv_ref_probs(cm, mv_ref_p, mbmi->mb_mode_context[mbmi->ref_frame[0]]);

      // If the segment level skip mode enabled
      if (vp9_segfeature_active(xd, mbmi->segment_id, SEG_LVL_SKIP)) {
        mbmi->mode = ZEROMV;
      } else if (bsize >= BLOCK_SIZE_SB8X8) {
        mbmi->mode = read_sb_mv_ref(r, mv_ref_p);
        vp9_accum_mv_refs(cm, mbmi->mode,
                          mbmi->mb_mode_context[mbmi->ref_frame[0]]);
      }

      if (bsize < BLOCK_SIZE_SB8X8 || mbmi->mode != ZEROMV) {
        vp9_find_best_ref_mvs(xd,
                              mbmi->ref_mvs[mbmi->ref_frame[0]],
                              &nearest, &nearby);

        best_mv.as_int = mbmi->ref_mvs[mbmi->ref_frame[0]][0].as_int;
      }

#ifdef DEC_DEBUG
      if (dec_debug)
        printf("[D %d %d] %d %d %d %d\n", ref_frame,
               mbmi->mb_mode_context[ref_frame],
               mv_ref_p[0], mv_ref_p[1], mv_ref_p[2], mv_ref_p[3]);
#endif
    }

    mbmi->interp_filter = cm->mcomp_filter_type == SWITCHABLE
                              ? read_switchable_filter_type(pbi, r)
                              : cm->mcomp_filter_type;

    if (mbmi->ref_frame[1] > INTRA_FRAME) {
      vp9_find_mv_refs(cm, xd, mi, xd->prev_mode_info_context,
                       mbmi->ref_frame[1],
                       mbmi->ref_mvs[mbmi->ref_frame[1]],
                       cm->ref_frame_sign_bias);

      if (bsize < BLOCK_SIZE_SB8X8 || mbmi->mode != ZEROMV) {
        vp9_find_best_ref_mvs(xd,
                              mbmi->ref_mvs[mbmi->ref_frame[1]],
                              &nearest_second,
                              &nearby_second);
        best_mv_second.as_int = mbmi->ref_mvs[mbmi->ref_frame[1]][0].as_int;
      }
    }

    mbmi->uv_mode = DC_PRED;
    if (mbmi->sb_type < BLOCK_SIZE_SB8X8) {
      mbmi->need_to_clamp_mvs = 0;
      for (idy = 0; idy < 2; idy += bh) {
        for (idx = 0; idx < 2; idx += bw) {
          int_mv blockmv, secondmv;
          int blockmode;
          int i;
          j = idy * 2 + idx;

          blockmode = read_sb_mv_ref(r, mv_ref_p);
          vp9_accum_mv_refs(cm, blockmode,
                            mbmi->mb_mode_context[mbmi->ref_frame[0]]);
          if (blockmode == NEARESTMV || blockmode == NEARMV) {
            MV_REFERENCE_FRAME rf2 = mbmi->ref_frame[1];
            vp9_append_sub8x8_mvs_for_idx(cm, xd, &nearest, &nearby, j, 0);
            if (rf2 > 0) {
              vp9_append_sub8x8_mvs_for_idx(cm, xd,  &nearest_second,
                                            &nearby_second, j, 1);
            }
          }

          switch (blockmode) {
            case NEWMV:
              decode_mv(r, &blockmv.as_mv, &best_mv.as_mv, nmvc,
                         &cm->fc.NMVcount, xd->allow_high_precision_mv);

              if (mbmi->ref_frame[1] > 0)
                decode_mv(r, &secondmv.as_mv, &best_mv_second.as_mv, nmvc,
                          &cm->fc.NMVcount, xd->allow_high_precision_mv);

#ifdef VPX_MODE_COUNT
              vp9_mv_cont_count[mv_contz][3]++;
#endif
              break;
            case NEARESTMV:
              blockmv.as_int = nearest.as_int;
              if (mbmi->ref_frame[1] > 0)
                secondmv.as_int = nearest_second.as_int;
#ifdef VPX_MODE_COUNT
              vp9_mv_cont_count[mv_contz][0]++;
#endif
              break;
            case NEARMV:
              blockmv.as_int = nearby.as_int;
              if (mbmi->ref_frame[1] > 0)
                secondmv.as_int = nearby_second.as_int;
#ifdef VPX_MODE_COUNT
              vp9_mv_cont_count[mv_contz][1]++;
#endif
              break;
            case ZEROMV:
              blockmv.as_int = 0;
              if (mbmi->ref_frame[1] > 0)
                secondmv.as_int = 0;
#ifdef VPX_MODE_COUNT
              vp9_mv_cont_count[mv_contz][2]++;
#endif
              break;
            default:
              break;
          }
          mi->bmi[j].as_mv[0].as_int = blockmv.as_int;
          if (mbmi->ref_frame[1] > 0)
            mi->bmi[j].as_mv[1].as_int = secondmv.as_int;

          for (i = 1; i < bh; ++i)
            vpx_memcpy(&mi->bmi[j + i * 2], &mi->bmi[j], sizeof(mi->bmi[j]));
          for (i = 1; i < bw; ++i)
            vpx_memcpy(&mi->bmi[j + i], &mi->bmi[j], sizeof(mi->bmi[j]));
          mi->mbmi.mode = blockmode;
        }
      }

      mv0->as_int = mi->bmi[3].as_mv[0].as_int;
      mv1->as_int = mi->bmi[3].as_mv[1].as_int;
    } else {
      switch (mbmi->mode) {
        case NEARMV:
          // Clip "next_nearest" so that it does not extend to far out of image
          assign_and_clamp_mv(mv0, &nearby, mb_to_left_edge,
                                            mb_to_right_edge,
                                            mb_to_top_edge,
                                            mb_to_bottom_edge);
          if (mbmi->ref_frame[1] > 0)
            assign_and_clamp_mv(mv1, &nearby_second, mb_to_left_edge,
                                                     mb_to_right_edge,
                                                     mb_to_top_edge,
                                                     mb_to_bottom_edge);
          break;

        case NEARESTMV:
          // Clip "next_nearest" so that it does not extend to far out of image
          assign_and_clamp_mv(mv0, &nearest, mb_to_left_edge,
                                             mb_to_right_edge,
                                             mb_to_top_edge,
                                             mb_to_bottom_edge);
          if (mbmi->ref_frame[1] > 0)
            assign_and_clamp_mv(mv1, &nearest_second, mb_to_left_edge,
                                                      mb_to_right_edge,
                                                      mb_to_top_edge,
                                                      mb_to_bottom_edge);
          break;

        case ZEROMV:
          mv0->as_int = 0;
          if (mbmi->ref_frame[1] > 0)
            mv1->as_int = 0;
          break;

        case NEWMV:
          decode_mv(r, &mv0->as_mv, &best_mv.as_mv, nmvc, &cm->fc.NMVcount,
                    xd->allow_high_precision_mv);
          mbmi->need_to_clamp_mvs = check_mv_bounds(mv0,
                                                    mb_to_left_edge,
                                                    mb_to_right_edge,
                                                    mb_to_top_edge,
                                                    mb_to_bottom_edge);

          if (mbmi->ref_frame[1] > 0) {
            decode_mv(r, &mv1->as_mv, &best_mv_second.as_mv, nmvc,
                      &cm->fc.NMVcount, xd->allow_high_precision_mv);
            mbmi->need_to_clamp_secondmv = check_mv_bounds(mv1,
                                                             mb_to_left_edge,
                                                             mb_to_right_edge,
                                                             mb_to_top_edge,
                                                             mb_to_bottom_edge);
          }
          break;
        default:
#if CONFIG_DEBUG
          assert(0);
#endif
          break;
      }
    }
  } else {
    // required for left and above block mv
    mv0->as_int = 0;

    if (bsize >= BLOCK_SIZE_SB8X8) {
      const BLOCK_SIZE_TYPE bsize = xd->mode_info_context->mbmi.sb_type;
      const int bwl = b_width_log2(bsize), bhl = b_height_log2(bsize);
      const int bsl = MIN(bwl, bhl);
      mbmi->mode = read_intra_mode(r, cm->fc.y_mode_prob[MIN(3, bsl)]);
      cm->fc.y_mode_counts[MIN(3, bsl)][mbmi->mode]++;
    } else {
      int idx, idy;
      for (idy = 0; idy < 2; idy += bh) {
        for (idx = 0; idx < 2; idx += bw) {
          int ib = idy * 2 + idx, k;
          int m = read_intra_mode(r, cm->fc.y_mode_prob[0]);
          mi->bmi[ib].as_mode.first = m;
          cm->fc.y_mode_counts[0][m]++;
          for (k = 1; k < bh; ++k)
            mi->bmi[ib + k * 2].as_mode.first = m;
          for (k = 1; k < bw; ++k)
            mi->bmi[ib + k].as_mode.first = m;
        }
      }
      mbmi->mode = mi->bmi[3].as_mode.first;
    }

    mbmi->uv_mode = read_intra_mode(r, cm->fc.uv_mode_prob[mbmi->mode]);
    cm->fc.uv_mode_counts[mbmi->mode][mbmi->uv_mode]++;
  }
}

void vp9_decode_mode_mvs_init(VP9D_COMP* const pbi, vp9_reader *r) {
  VP9_COMMON *cm = &pbi->common;
  int k;

  // TODO(jkoleszar): does this clear more than MBSKIP_CONTEXTS? Maybe remove.
  // vpx_memset(cm->fc.mbskip_probs, 0, sizeof(cm->fc.mbskip_probs));
  for (k = 0; k < MBSKIP_CONTEXTS; ++k) {
    if (vp9_read(r, VP9_MODE_UPDATE_PROB)) {
      cm->fc.mbskip_probs[k] =
          vp9_read_prob_diff_update(r, cm->fc.mbskip_probs[k]);
    }
    // cm->fc.mbskip_probs[k] = vp9_read_prob(r);
  }

  mb_mode_mv_init(pbi, r);
}

void vp9_decode_mb_mode_mv(VP9D_COMP* const pbi,
                           MACROBLOCKD* const xd,
                           int mi_row,
                           int mi_col,
                           vp9_reader *r) {
  VP9_COMMON *const cm = &pbi->common;
  MODE_INFO *mi = xd->mode_info_context;
  MB_MODE_INFO *const mbmi = &mi->mbmi;

  if ((cm->frame_type == KEY_FRAME) || cm->intra_only) {
    kfread_modes(pbi, mi, mi_row, mi_col, r);
  } else {
    read_mb_modes_mv(pbi, mi, &mi->mbmi, mi_row, mi_col, r);
  }

  if (1) {
    const int bw = 1 << mi_width_log2(mbmi->sb_type);
    const int bh = 1 << mi_height_log2(mbmi->sb_type);
    const int y_mis = MIN(bh, cm->mi_rows - mi_row);
    const int x_mis = MIN(bw, cm->mi_cols - mi_col);
    const int mis = cm->mode_info_stride;
    int x, y;

    for (y = 0; y < y_mis; y++)
      for (x = !y; x < x_mis; x++)
        mi[y * mis + x] = *mi;
  }
}