ref: 0449ee0fececb00d89afbb42505cb7e43ee67db0
dir: /vp9/common/vp9_loopfilter.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vpx_config.h" #include "vp9/common/vp9_loopfilter.h" #include "vp9/common/vp9_onyxc_int.h" #include "vpx_mem/vpx_mem.h" #include "vp9/common/vp9_seg_common.h" static void lf_init_lut(loop_filter_info_n *lfi) { lfi->mode_lf_lut[DC_PRED] = 1; lfi->mode_lf_lut[D45_PRED] = 1; lfi->mode_lf_lut[D135_PRED] = 1; lfi->mode_lf_lut[D117_PRED] = 1; lfi->mode_lf_lut[D153_PRED] = 1; lfi->mode_lf_lut[D27_PRED] = 1; lfi->mode_lf_lut[D63_PRED] = 1; lfi->mode_lf_lut[V_PRED] = 1; lfi->mode_lf_lut[H_PRED] = 1; lfi->mode_lf_lut[TM_PRED] = 1; lfi->mode_lf_lut[ZEROMV] = 1; lfi->mode_lf_lut[NEARESTMV] = 2; lfi->mode_lf_lut[NEARMV] = 2; lfi->mode_lf_lut[NEWMV] = 2; } void vp9_loop_filter_update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) { int i; /* For each possible value for the loop filter fill out limits */ for (i = 0; i <= MAX_LOOP_FILTER; i++) { int filt_lvl = i; int block_inside_limit = 0; /* Set loop filter paramaeters that control sharpness. */ block_inside_limit = filt_lvl >> (sharpness_lvl > 0); block_inside_limit = block_inside_limit >> (sharpness_lvl > 4); if (sharpness_lvl > 0) { if (block_inside_limit > (9 - sharpness_lvl)) block_inside_limit = (9 - sharpness_lvl); } if (block_inside_limit < 1) block_inside_limit = 1; vpx_memset(lfi->lim[i], block_inside_limit, SIMD_WIDTH); vpx_memset(lfi->blim[i], (2 * filt_lvl + block_inside_limit), SIMD_WIDTH); vpx_memset(lfi->mblim[i], (2 * (filt_lvl + 2) + block_inside_limit), SIMD_WIDTH); } } void vp9_loop_filter_init(VP9_COMMON *cm) { loop_filter_info_n *lfi = &cm->lf_info; int i; // init limits for given sharpness vp9_loop_filter_update_sharpness(lfi, cm->sharpness_level); cm->last_sharpness_level = cm->sharpness_level; // init LUT for lvl and hev thr picking lf_init_lut(lfi); // init hev threshold const vectors for (i = 0; i < 4; i++) vpx_memset(lfi->hev_thr[i], i, SIMD_WIDTH); } void vp9_loop_filter_frame_init(VP9_COMMON *cm, MACROBLOCKD *xd, int default_filt_lvl) { int seg, // segment number ref, // index in ref_lf_deltas mode; // index in mode_lf_deltas // n_shift is the a multiplier for lf_deltas // the multiplier is 1 for when filter_lvl is between 0 and 31; // 2 when filter_lvl is between 32 and 63 int n_shift = default_filt_lvl >> 5; loop_filter_info_n *lfi = &cm->lf_info; /* update limits if sharpness has changed */ // printf("vp9_loop_filter_frame_init %d\n", default_filt_lvl); // printf("sharpness level: %d [%d]\n", // cm->sharpness_level, cm->last_sharpness_level); if (cm->last_sharpness_level != cm->sharpness_level) { vp9_loop_filter_update_sharpness(lfi, cm->sharpness_level); cm->last_sharpness_level = cm->sharpness_level; } for (seg = 0; seg < MAX_MB_SEGMENTS; seg++) { int lvl_seg = default_filt_lvl; int lvl_ref, lvl_mode; // Set the baseline filter values for each segment if (vp9_segfeature_active(xd, seg, SEG_LVL_ALT_LF)) { /* Abs value */ if (xd->mb_segment_abs_delta == SEGMENT_ABSDATA) { lvl_seg = vp9_get_segdata(xd, seg, SEG_LVL_ALT_LF); } else { /* Delta Value */ lvl_seg += vp9_get_segdata(xd, seg, SEG_LVL_ALT_LF); lvl_seg = clamp(lvl_seg, 0, 63); } } if (!xd->mode_ref_lf_delta_enabled) { /* we could get rid of this if we assume that deltas are set to * zero when not in use; encoder always uses deltas */ vpx_memset(lfi->lvl[seg][0], lvl_seg, 4 * 4); continue; } lvl_ref = lvl_seg; /* INTRA_FRAME */ ref = INTRA_FRAME; /* Apply delta for reference frame */ lvl_ref += xd->ref_lf_deltas[ref] << n_shift; /* Apply delta for Intra modes */ mode = 0; /* I4X4_PRED */ /* Only the split mode I4X4_PRED has a further special case */ lvl_mode = lvl_ref + (xd->mode_lf_deltas[mode] << n_shift); lfi->lvl[seg][ref][mode] = clamp(lvl_mode, 0, 63); mode = 1; /* all the rest of Intra modes */ lvl_mode = lvl_ref; lfi->lvl[seg][ref][mode] = clamp(lvl_mode, 0, 63); /* LAST, GOLDEN, ALT */ for (ref = 1; ref < MAX_REF_FRAMES; ref++) { int lvl_ref = lvl_seg; /* Apply delta for reference frame */ lvl_ref += xd->ref_lf_deltas[ref] << n_shift; /* Apply delta for Inter modes */ for (mode = 1; mode < 4; mode++) { lvl_mode = lvl_ref + (xd->mode_lf_deltas[mode] << n_shift); lfi->lvl[seg][ref][mode] = clamp(lvl_mode, 0, 63); } } } } // Determine if we should skip inner-MB loop filtering within a MB // The current condition is that the loop filtering is skipped only // the MB uses a prediction size of 16x16 and either 16x16 transform // is used or there is no residue at all. static int mb_lf_skip(const MB_MODE_INFO *const mbmi) { const int skip_coef = mbmi->mb_skip_coeff; const int tx_size = mbmi->txfm_size; return mbmi->sb_type >= BLOCK_SIZE_MB16X16 && (tx_size >= TX_16X16 || skip_coef); } // Determine if we should skip MB loop filtering on a MB edge within // a superblock, the current condition is that MB loop filtering is // skipped only when both MBs do not use inner MB loop filtering, and // same motion vector with same reference frame static int sb_mb_lf_skip(const MODE_INFO *const mip0, const MODE_INFO *const mip1) { const MB_MODE_INFO *mbmi0 = &mip0->mbmi; const MB_MODE_INFO *mbmi1 = &mip1->mbmi; return mb_lf_skip(mbmi0) && mb_lf_skip(mbmi1) && mbmi0->ref_frame != INTRA_FRAME && mbmi1->ref_frame != INTRA_FRAME; } static void lpf_mb(VP9_COMMON *cm, const MODE_INFO *mi, int do_left_mb_v, int do_above_mb_h, int do_left_mbuv_v, int do_above_mbuv_h, uint8_t *y_ptr, uint8_t *u_ptr, uint8_t *v_ptr, int y_stride, int uv_stride) { loop_filter_info_n *lfi_n = &cm->lf_info; struct loop_filter_info lfi; int mode = mi->mbmi.mode; int mode_index = lfi_n->mode_lf_lut[mode]; int seg = mi->mbmi.segment_id; int ref_frame = mi->mbmi.ref_frame; int filter_level = lfi_n->lvl[seg][ref_frame][mode_index]; if (filter_level) { const int skip_lf = mb_lf_skip(&mi->mbmi); const int tx_size = mi->mbmi.txfm_size; const int hev_index = filter_level >> 4; lfi.mblim = lfi_n->mblim[filter_level]; lfi.blim = lfi_n->blim[filter_level]; lfi.lim = lfi_n->lim[filter_level]; lfi.hev_thr = lfi_n->hev_thr[hev_index]; if (do_above_mb_h) { if (tx_size >= TX_16X16) vp9_lpf_mbh_w(y_ptr, do_above_mbuv_h ? u_ptr : NULL, do_above_mbuv_h ? v_ptr : NULL, y_stride, uv_stride, &lfi); else vp9_loop_filter_mbh(y_ptr, u_ptr, v_ptr, y_stride, uv_stride, &lfi); } if (!skip_lf) { if (tx_size >= TX_8X8) { if (tx_size == TX_8X8 && mi->mbmi.sb_type < BLOCK_SIZE_MB16X16) vp9_loop_filter_bh8x8(y_ptr, u_ptr, v_ptr, y_stride, uv_stride, &lfi); else vp9_loop_filter_bh8x8(y_ptr, NULL, NULL, y_stride, uv_stride, &lfi); } else { vp9_loop_filter_bh(y_ptr, u_ptr, v_ptr, y_stride, uv_stride, &lfi); } } if (do_left_mb_v) { if (tx_size >= TX_16X16) vp9_lpf_mbv_w(y_ptr, do_left_mbuv_v ? u_ptr : NULL, do_left_mbuv_v ? v_ptr : NULL, y_stride, uv_stride, &lfi); else vp9_loop_filter_mbv(y_ptr, u_ptr, v_ptr, y_stride, uv_stride, &lfi); } if (!skip_lf) { if (tx_size >= TX_8X8) { if (tx_size == TX_8X8 && mi->mbmi.sb_type < BLOCK_SIZE_MB16X16) vp9_loop_filter_bv8x8(y_ptr, u_ptr, v_ptr, y_stride, uv_stride, &lfi); else vp9_loop_filter_bv8x8(y_ptr, NULL, NULL, y_stride, uv_stride, &lfi); } else { vp9_loop_filter_bv(y_ptr, u_ptr, v_ptr, y_stride, uv_stride, &lfi); } } } } static void lpf_sb32(VP9_COMMON *cm, const MODE_INFO *mode_info_context, int mb_row, int mb_col, uint8_t *y_ptr, uint8_t *u_ptr, uint8_t *v_ptr, int y_stride, int uv_stride, int y_only) { BLOCK_SIZE_TYPE sb_type = mode_info_context->mbmi.sb_type; const int wbl = b_width_log2(sb_type), hbl = b_height_log2(sb_type); TX_SIZE tx_size = mode_info_context->mbmi.txfm_size; int do_left_v, do_above_h; int do_left_v_mbuv, do_above_h_mbuv; int mis = cm->mode_info_stride; const MODE_INFO *mi; // process 1st MB top-left mi = mode_info_context; do_left_v = (mb_col > 0); do_above_h = (mb_row > 0); do_left_v_mbuv = !(sb_type >= BLOCK_SIZE_SB64X64 && tx_size >= TX_32X32 && (mb_col & 2)); do_above_h_mbuv = !(sb_type >= BLOCK_SIZE_SB64X64 && tx_size >= TX_32X32 && (mb_row & 2)); lpf_mb(cm, mi, do_left_v, do_above_h, do_left_v_mbuv, do_above_h_mbuv, y_ptr, y_only? 0 : u_ptr, y_only? 0 : v_ptr, y_stride, uv_stride); // process 2nd MB top-right mi = mode_info_context + 2; do_left_v = !(wbl >= 3 /* 32x16 or >=32x32 */ && (tx_size >= TX_32X32 || sb_mb_lf_skip(mode_info_context, mi))); do_above_h = (mb_row > 0); do_left_v_mbuv = !(wbl >= 3 /* 32x16 or >=32x32 */ && (tx_size >= TX_16X16 || sb_mb_lf_skip(mode_info_context, mi))); do_above_h_mbuv = !(sb_type >= BLOCK_SIZE_SB64X64 && tx_size >= TX_32X32 && (mb_row & 2)); lpf_mb(cm, mi, do_left_v, do_above_h, do_left_v_mbuv, do_above_h_mbuv, y_ptr + 16, y_only ? 0 : (u_ptr + 8), y_only ? 0 : (v_ptr + 8), y_stride, uv_stride); // process 3rd MB bottom-left mi = mode_info_context + (mis << 1); do_left_v = (mb_col > 0); do_above_h = !(hbl >= 3 /* 16x32 or >=32x32 */ && (tx_size >= TX_32X32 || sb_mb_lf_skip(mode_info_context, mi))); do_left_v_mbuv = !(sb_type >= BLOCK_SIZE_SB64X64 && tx_size >= TX_32X32 && (mb_col & 2)); do_above_h_mbuv = !(hbl >= 3 /* 16x32 or >=32x32 */ && (tx_size >= TX_16X16 || sb_mb_lf_skip(mode_info_context, mi))); lpf_mb(cm, mi, do_left_v, do_above_h, do_left_v_mbuv, do_above_h_mbuv, y_ptr + 16 * y_stride, y_only ? 0 : (u_ptr + 8 * uv_stride), y_only ? 0 : (v_ptr + 8 * uv_stride), y_stride, uv_stride); // process 4th MB bottom right mi = mode_info_context + ((mis + 1) << 1); do_left_v = !(wbl >= 3 /* 32x16 or >=32x32 */ && (tx_size >= TX_32X32 || sb_mb_lf_skip(mi - 2, mi))); do_above_h = !(hbl >= 3 /* 16x32 or >=32x32 */ && (tx_size >= TX_32X32 || sb_mb_lf_skip(mode_info_context + 2, mi))); do_left_v_mbuv = (wbl >= 3 /* 32x16 or >=32x32 */ && (tx_size >= TX_16X16 || sb_mb_lf_skip(mi - 2, mi))); do_above_h_mbuv = !(hbl >= 3 /* 16x32 or >=32x32 */ && (tx_size >= TX_16X16 || sb_mb_lf_skip(mode_info_context + 2, mi))); lpf_mb(cm, mi, do_left_v, do_above_h, do_left_v_mbuv, do_above_h_mbuv, y_ptr + 16 * y_stride + 16, y_only ? 0 : (u_ptr + 8 * uv_stride + 8), y_only ? 0 : (v_ptr + 8 * uv_stride + 8), y_stride, uv_stride); } static void lpf_sb64(VP9_COMMON *cm, const MODE_INFO *mode_info_context, int mb_row, int mb_col, uint8_t *y_ptr, uint8_t *u_ptr, uint8_t *v_ptr, int y_stride, int uv_stride, int y_only) { lpf_sb32(cm, mode_info_context, mb_row, mb_col, y_ptr, u_ptr, v_ptr, y_stride, uv_stride, y_only); lpf_sb32(cm, mode_info_context + 4, mb_row, mb_col + 2, y_ptr + 32, u_ptr + 16, v_ptr + 16, y_stride, uv_stride, y_only); lpf_sb32(cm, mode_info_context + cm->mode_info_stride * 4, mb_row + 2, mb_col, y_ptr + 32 * y_stride, u_ptr + 16 * uv_stride, v_ptr + 16 * uv_stride, y_stride, uv_stride, y_only); lpf_sb32(cm, mode_info_context + cm->mode_info_stride * 4 + 4, mb_row + 2, mb_col + 2, y_ptr + 32 * y_stride + 32, u_ptr + 16 * uv_stride + 16, v_ptr + 16 * uv_stride + 16, y_stride, uv_stride, y_only); } void vp9_loop_filter_frame(VP9_COMMON *cm, MACROBLOCKD *xd, int frame_filter_level, int y_only) { YV12_BUFFER_CONFIG *post = cm->frame_to_show; int mb_row, mb_col; const int sb64_rows = cm->mb_rows / 4; const int sb64_cols = cm->mb_cols / 4; const int extra_sb32_row = (cm->mb_rows & 2) != 0; const int extra_sb32_col = (cm->mb_cols & 2) != 0; const int extra_mb_col = cm->mb_cols & 1; const int extra_mb_row = cm->mb_rows & 1; // Set up the buffer pointers uint8_t *y_ptr = post->y_buffer; uint8_t *u_ptr = y_only ? 0 : post->u_buffer; uint8_t *v_ptr = y_only ? 0 : post->v_buffer; // Point at base of Mb MODE_INFO list const MODE_INFO *mode_info_context = cm->mi; const MODE_INFO *mi; const int mis = cm->mode_info_stride; const int y_stride = post->y_stride; const int uv_stride = post->uv_stride; // These two flags signal if MB left edge and above edge // should be filtered using MB edge filter. Currently, MB // edge filtering is not applied on MB edge internal to a // 32x32 superblock if: // 1) SB32 is using 32x32 prediction and 32x32 transform // 2) SB32 is using 32x32 prediction and 16x16 transform // but all coefficients are zero. // MB edges are on 32x32 superblock boundary are always // filtered except on image frame boundary. int do_left_v, do_above_h; // These two flags signal if MB UV left edge and above edge // should be filtered using MB edge filter. Currently, MB // edge filtering is not applied for MB edges internal to // a 32x32 superblock if: // 1) SB32 is using 32x32 prediction and 32x32 transform // 2) SB32 is using 32x32 prediction and 16x16 transform // but all coefficients are zero. // 3) SB32 UV edges internal to a SB64 and 32x32 transform // is used, i.e. UV is doing 32x32 transform hence no // transform boundary exists inside the SB64 for UV int do_left_v_mbuv, do_above_h_mbuv; // Initialize the loop filter for this frame. vp9_loop_filter_frame_init(cm, xd, frame_filter_level); // vp9_filter each 64x64 SB // For each SB64: the 4 SB32 are filtered in raster scan order // For each SB32: the 4 MBs are filtered in raster scan order // For each MB: the left and above MB edges as well as the // internal block edges are processed together for (mb_row = 0; mb_row < sb64_rows * 4; mb_row += 4) { for (mb_col = 0; mb_col < sb64_cols * 4; mb_col += 4) { lpf_sb64(cm, mode_info_context, mb_row, mb_col, y_ptr, u_ptr, v_ptr, y_stride, uv_stride, y_only); y_ptr += 64; u_ptr = y_only? 0 : u_ptr + 32; v_ptr = y_only? 0 : v_ptr + 32; mode_info_context += 8; // step to next SB64 } if (extra_sb32_col) { // process 2 SB32s in the extra SB32 col lpf_sb32(cm, mode_info_context, mb_row, mb_col, y_ptr, u_ptr, v_ptr, y_stride, uv_stride, y_only); lpf_sb32(cm, mode_info_context + mis * 4, mb_row + 2, mb_col, y_ptr + 32 * y_stride, u_ptr + 16 * uv_stride, v_ptr + 16 * uv_stride, y_stride, uv_stride, y_only); y_ptr += 32; u_ptr = y_only? 0 : u_ptr + 16; v_ptr = y_only? 0 : v_ptr + 16; mode_info_context += 4; // step to next SB32 mb_col += 2; } if (extra_mb_col) { // process 4 MB in the extra MB col int k; for (k = 0; k < 4; ++k) { mi = mode_info_context + (mis << 1) * k; do_left_v = (mb_col > 0); do_above_h = k == 0 ? mb_row > 0 : 1; do_left_v_mbuv = 1; do_above_h_mbuv = 1; lpf_mb(cm, mi, do_left_v, do_above_h, do_left_v_mbuv, do_above_h_mbuv, y_ptr + (k * 16) * y_stride, y_only ? 0 : (u_ptr + (k * 8) * uv_stride), y_only ? 0 : (v_ptr + (k * 8) * uv_stride), y_stride, uv_stride); } y_ptr += 16; u_ptr = y_only? 0 : u_ptr + 8; v_ptr = y_only? 0 : v_ptr + 8; mode_info_context += 2; // step to next MB } // move pointers to the begining of next sb64 row y_ptr += y_stride * 64 - post->y_width; if (!y_only) { u_ptr += uv_stride * 32 - post->uv_width; v_ptr += uv_stride * 32 - post->uv_width; } /* skip to next SB64 row */ mode_info_context += mis * 8 - cm->mi_cols; } if (extra_sb32_row) { const int sb32_cols = sb64_cols * 2 + extra_sb32_col; for (mb_col = 0; mb_col < sb32_cols * 2; mb_col += 2) { lpf_sb32(cm, mode_info_context, mb_row, mb_col, y_ptr, u_ptr, v_ptr, y_stride, uv_stride, y_only); y_ptr += 32; u_ptr = y_only? 0 : u_ptr + 16; v_ptr = y_only? 0 : v_ptr + 16; mode_info_context += 4; // step to next SB32 } if (extra_mb_col) { // process 1st MB mi = mode_info_context; do_left_v = (mb_col > 0); do_above_h = (mb_row > 0); do_left_v_mbuv = 1; do_above_h_mbuv = 1; lpf_mb(cm, mi, do_left_v, do_above_h, do_left_v_mbuv, do_above_h_mbuv, y_ptr, y_only? NULL : u_ptr, y_only? NULL : v_ptr, y_stride, uv_stride); // process 2nd MB mi = mode_info_context + (mis << 1); do_left_v = (mb_col > 0); do_above_h = 1; do_left_v_mbuv = 1; do_above_h_mbuv = 1; lpf_mb(cm, mi, do_left_v, do_above_h, do_left_v_mbuv, do_above_h_mbuv, y_ptr + 16 * y_stride, y_only ? NULL : (u_ptr + 8 * uv_stride), y_only ? NULL : (v_ptr + 8 * uv_stride), y_stride, uv_stride); y_ptr += 16; u_ptr = y_only? 0 : u_ptr + 8; v_ptr = y_only? 0 : v_ptr + 8; mode_info_context += 2; /* step to next MB */ } // move pointers to the beginning of next sb64 row y_ptr += y_stride * 32 - post->y_width; u_ptr += y_only? 0 : uv_stride * 16 - post->uv_width; v_ptr += y_only? 0 : uv_stride * 16 - post->uv_width; // skip to next MB row if exist mode_info_context += mis * 4 - cm->mi_cols; mb_row += 2; } if (extra_mb_row) { for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { const MODE_INFO *mi = mode_info_context; do_left_v = (mb_col > 0); do_above_h = (mb_row > 0); do_left_v_mbuv = 1; do_above_h_mbuv = 1; lpf_mb(cm, mi, do_left_v, do_above_h, do_left_v_mbuv, do_above_h_mbuv, y_ptr, y_only? 0 : u_ptr, y_only? 0 : v_ptr, y_stride, uv_stride); y_ptr += 16; u_ptr = y_only? 0 : u_ptr + 8; v_ptr = y_only? 0 : v_ptr + 8; mode_info_context += 2; // step to next MB } } }