ref: a7df0e7fbfe7cec2a87f2a90db76e51602de26e5
dir: /tests/multi_channel_test.c/
/* ** Copyright (C) 2002-2011 Erik de Castro Lopo <erikd@mega-nerd.com> ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with this program; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include <stdio.h> #include <stdlib.h> #include <string.h> #include <math.h> #include <assert.h> #include <samplerate.h> #include "util.h" #define BUFFER_LEN 50000 #define BLOCK_LEN (12) #define MAX_CHANNELS 10 static void simple_test (int converter, int channel_count, double target_snr) ; static void process_test (int converter, int channel_count, double target_snr) ; static void callback_test (int converter, int channel_count, double target_snr) ; int main (void) { double target ; int k ; puts ("\n Zero Order Hold interpolator :") ; target = 38.0 ; for (k = 1 ; k <= 3 ; k++) { simple_test (SRC_ZERO_ORDER_HOLD, k, target) ; process_test (SRC_ZERO_ORDER_HOLD, k, target) ; callback_test (SRC_ZERO_ORDER_HOLD, k, target) ; } ; puts ("\n Linear interpolator :") ; target = 79.0 ; for (k = 1 ; k <= 3 ; k++) { simple_test (SRC_LINEAR, k, target) ; process_test (SRC_LINEAR, k, target) ; callback_test (SRC_LINEAR, k, target) ; } ; puts ("\n Sinc interpolator :") ; target = 100.0 ; for (k = 1 ; k <= MAX_CHANNELS ; k++) { simple_test (SRC_SINC_FASTEST, k, target) ; process_test (SRC_SINC_FASTEST, k, target) ; callback_test (SRC_SINC_FASTEST, k, target) ; } ; puts ("") ; return 0 ; } /* main */ /*============================================================================== */ static float input_serial [BUFFER_LEN * MAX_CHANNELS] ; static float input_interleaved [BUFFER_LEN * MAX_CHANNELS] ; static float output_interleaved [BUFFER_LEN * MAX_CHANNELS] ; static float output_serial [BUFFER_LEN * MAX_CHANNELS] ; static void simple_test (int converter, int channel_count, double target_snr) { SRC_DATA src_data ; double freq, snr ; int ch, error, frames ; printf ("\t%-22s (%2d channel%c) ............ ", "simple_test", channel_count, channel_count > 1 ? 's' : ' ') ; fflush (stdout) ; assert (channel_count <= MAX_CHANNELS) ; memset (input_serial, 0, sizeof (input_serial)) ; memset (input_interleaved, 0, sizeof (input_interleaved)) ; memset (output_interleaved, 0, sizeof (output_interleaved)) ; memset (output_serial, 0, sizeof (output_serial)) ; frames = BUFFER_LEN ; /* Calculate channel_count separate windowed sine waves. */ for (ch = 0 ; ch < channel_count ; ch++) { freq = (200.0 + 33.333333333 * ch) / 44100.0 ; gen_windowed_sines (1, &freq, 1.0, input_serial + ch * frames, frames) ; } ; /* Interleave the data in preparation for SRC. */ interleave_data (input_serial, input_interleaved, frames, channel_count) ; /* Choose a converstion ratio <= 1.0. */ src_data.src_ratio = 0.95 ; src_data.data_in = input_interleaved ; src_data.input_frames = frames ; src_data.data_out = output_interleaved ; src_data.output_frames = frames ; if ((error = src_simple (&src_data, converter, channel_count))) { printf ("\n\nLine %d : %s\n\n", __LINE__, src_strerror (error)) ; exit (1) ; } ; if (fabs (src_data.output_frames_gen - src_data.src_ratio * src_data.input_frames) > 2) { printf ("\n\nLine %d : bad output data length %ld should be %d.\n", __LINE__, src_data.output_frames_gen, (int) floor (src_data.src_ratio * src_data.input_frames)) ; printf ("\tsrc_ratio : %.4f\n", src_data.src_ratio) ; printf ("\tinput_len : %ld\n", src_data.input_frames) ; printf ("\toutput_len : %ld\n\n", src_data.output_frames_gen) ; exit (1) ; } ; /* De-interleave data so SNR can be calculated for each channel. */ deinterleave_data (output_interleaved, output_serial, frames, channel_count) ; for (ch = 0 ; ch < channel_count ; ch++) { snr = calculate_snr (output_serial + ch * frames, frames, 1) ; if (snr < target_snr) { printf ("\n\nLine %d: channel %d snr %f should be %f\n", __LINE__, ch, snr, target_snr) ; save_oct_float ("output.dat", input_serial, channel_count * frames, output_serial, channel_count * frames) ; exit (1) ; } ; } ; puts ("ok") ; return ; } /* simple_test */ /*============================================================================== */ static void process_test (int converter, int channel_count, double target_snr) { SRC_STATE *src_state ; SRC_DATA src_data ; double freq, snr ; int ch, error, frames, current_in, current_out ; printf ("\t%-22s (%2d channel%c) ............ ", "process_test", channel_count, channel_count > 1 ? 's' : ' ') ; fflush (stdout) ; assert (channel_count <= MAX_CHANNELS) ; memset (input_serial, 0, sizeof (input_serial)) ; memset (input_interleaved, 0, sizeof (input_interleaved)) ; memset (output_interleaved, 0, sizeof (output_interleaved)) ; memset (output_serial, 0, sizeof (output_serial)) ; frames = BUFFER_LEN ; /* Calculate channel_count separate windowed sine waves. */ for (ch = 0 ; ch < channel_count ; ch++) { freq = (400.0 + 11.333333333 * ch) / 44100.0 ; gen_windowed_sines (1, &freq, 1.0, input_serial + ch * frames, frames) ; } ; /* Interleave the data in preparation for SRC. */ interleave_data (input_serial, input_interleaved, frames, channel_count) ; /* Perform sample rate conversion. */ if ((src_state = src_new (converter, channel_count, &error)) == NULL) { printf ("\n\nLine %d : src_new() failed : %s\n\n", __LINE__, src_strerror (error)) ; exit (1) ; } ; src_data.end_of_input = 0 ; /* Set this later. */ /* Choose a converstion ratio < 1.0. */ src_data.src_ratio = 0.95 ; src_data.data_in = input_interleaved ; src_data.data_out = output_interleaved ; current_in = current_out = 0 ; while (1) { src_data.input_frames = MAX (MIN (BLOCK_LEN, frames - current_in), 0) ; src_data.output_frames = MAX (MIN (BLOCK_LEN, frames - current_out), 0) ; if ((error = src_process (src_state, &src_data))) { printf ("\n\nLine %d : %s\n\n", __LINE__, src_strerror (error)) ; exit (1) ; } ; if (src_data.end_of_input && src_data.output_frames_gen == 0) break ; current_in += src_data.input_frames_used ; current_out += src_data.output_frames_gen ; src_data.data_in += src_data.input_frames_used * channel_count ; src_data.data_out += src_data.output_frames_gen * channel_count ; src_data.end_of_input = (current_in >= frames) ? 1 : 0 ; } ; src_state = src_delete (src_state) ; if (fabs (current_out - src_data.src_ratio * current_in) > 2) { printf ("\n\nLine %d : bad output data length %d should be %d.\n", __LINE__, current_out, (int) floor (src_data.src_ratio * current_in)) ; printf ("\tsrc_ratio : %.4f\n", src_data.src_ratio) ; printf ("\tinput_len : %d\n", frames) ; printf ("\toutput_len : %d\n\n", current_out) ; exit (1) ; } ; /* De-interleave data so SNR can be calculated for each channel. */ deinterleave_data (output_interleaved, output_serial, frames, channel_count) ; for (ch = 0 ; ch < channel_count ; ch++) { snr = calculate_snr (output_serial + ch * frames, frames, 1) ; if (snr < target_snr) { printf ("\n\nLine %d: channel %d snr %f should be %f\n", __LINE__, ch, snr, target_snr) ; save_oct_float ("output.dat", input_serial, channel_count * frames, output_serial, channel_count * frames) ; exit (1) ; } ; } ; puts ("ok") ; return ; } /* process_test */ /*============================================================================== */ typedef struct { int channels ; long total_frames ; long current_frame ; float *data ; } TEST_CB_DATA ; static long test_callback_func (void *cb_data, float **data) { TEST_CB_DATA *pcb_data ; long frames ; if ((pcb_data = cb_data) == NULL) return 0 ; if (data == NULL) return 0 ; *data = pcb_data->data + (pcb_data->current_frame * pcb_data->channels) ; if (pcb_data->total_frames - pcb_data->current_frame < BLOCK_LEN) frames = pcb_data->total_frames - pcb_data->current_frame ; else frames = BLOCK_LEN ; pcb_data->current_frame += frames ; return frames ; } /* test_callback_func */ static void callback_test (int converter, int channel_count, double target_snr) { TEST_CB_DATA test_callback_data ; SRC_STATE *src_state = NULL ; double freq, snr, src_ratio ; int ch, error, frames, read_total, read_count ; printf ("\t%-22s (%2d channel%c) ............ ", "callback_test", channel_count, channel_count > 1 ? 's' : ' ') ; fflush (stdout) ; assert (channel_count <= MAX_CHANNELS) ; memset (input_serial, 0, sizeof (input_serial)) ; memset (input_interleaved, 0, sizeof (input_interleaved)) ; memset (output_interleaved, 0, sizeof (output_interleaved)) ; memset (output_serial, 0, sizeof (output_serial)) ; memset (&test_callback_data, 0, sizeof (test_callback_data)) ; frames = BUFFER_LEN ; /* Calculate channel_count separate windowed sine waves. */ for (ch = 0 ; ch < channel_count ; ch++) { freq = (200.0 + 33.333333333 * ch) / 44100.0 ; gen_windowed_sines (1, &freq, 1.0, input_serial + ch * frames, frames) ; } ; /* Interleave the data in preparation for SRC. */ interleave_data (input_serial, input_interleaved, frames, channel_count) ; /* Perform sample rate conversion. */ src_ratio = 0.95 ; test_callback_data.channels = channel_count ; test_callback_data.total_frames = frames ; test_callback_data.current_frame = 0 ; test_callback_data.data = input_interleaved ; if ((src_state = src_callback_new (test_callback_func, converter, channel_count, &error, &test_callback_data)) == NULL) { printf ("\n\nLine %d : %s\n\n", __LINE__, src_strerror (error)) ; exit (1) ; } ; read_total = 0 ; while (read_total < frames) { read_count = src_callback_read (src_state, src_ratio, frames - read_total, output_interleaved + read_total * channel_count) ; if (read_count <= 0) break ; read_total += read_count ; } ; if ((error = src_error (src_state)) != 0) { printf ("\n\nLine %d : %s\n\n", __LINE__, src_strerror (error)) ; exit (1) ; } ; src_state = src_delete (src_state) ; if (fabs (read_total - src_ratio * frames) > 2) { printf ("\n\nLine %d : bad output data length %d should be %d.\n", __LINE__, read_total, (int) floor (src_ratio * frames)) ; printf ("\tsrc_ratio : %.4f\n", src_ratio) ; printf ("\tinput_len : %d\n", frames) ; printf ("\toutput_len : %d\n\n", read_total) ; exit (1) ; } ; /* De-interleave data so SNR can be calculated for each channel. */ deinterleave_data (output_interleaved, output_serial, frames, channel_count) ; for (ch = 0 ; ch < channel_count ; ch++) { snr = calculate_snr (output_serial + ch * frames, frames, 1) ; if (snr < target_snr) { printf ("\n\nLine %d: channel %d snr %f should be %f\n", __LINE__, ch, snr, target_snr) ; save_oct_float ("output.dat", input_serial, channel_count * frames, output_serial, channel_count * frames) ; exit (1) ; } ; } ; puts ("ok") ; return ; } /* callback_test */