ref: 58869eabcb354df83a0833bf86c1d2a582a9b5ef
dir: /LEAF/Src/leaf-delay.c/
/* ============================================================================== LEAFDelay.c Created: 20 Jan 2017 12:01:24pm Author: Michael R Mulshine ============================================================================== */ #if _WIN32 || _WIN64 #include "..\Inc\leaf-delay.h" #include "..\leaf.h" #else #include "../Inc/leaf-delay.h" #include "../leaf.h" #endif // ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Delay ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ // void tDelay_init (tDelay* const d, uint32_t delay, uint32_t maxDelay) { d->maxDelay = maxDelay; d->delay = delay; d->buff = (float*) leaf_alloc(sizeof(float) * maxDelay); d->inPoint = 0; d->outPoint = 0; d->lastIn = 0.0f; d->lastOut = 0.0f; d->gain = 1.0f; tDelay_setDelay(d, d->delay); } void tDelay_free(tDelay* const d) { leaf_free(d->buff); leaf_free(d); } float tDelay_tick (tDelay* const d, float input) { // Input d->lastIn = input; d->buff[d->inPoint] = input * d->gain; if (++(d->inPoint) == d->maxDelay) d->inPoint = 0; // Output d->lastOut = d->buff[d->outPoint]; if (++(d->outPoint) == d->maxDelay) d->outPoint = 0; return d->lastOut; } int tDelay_setDelay (tDelay* const d, uint32_t delay) { d->delay = LEAF_clip(0.0f, delay, d->maxDelay); // read chases write if ( d->inPoint >= delay ) d->outPoint = d->inPoint - d->delay; else d->outPoint = d->maxDelay + d->inPoint - d->delay; return 0; } float tDelay_tapOut (tDelay* const d, uint32_t tapDelay) { int32_t tap = d->inPoint - tapDelay - 1; // Check for wraparound. while ( tap < 0 ) tap += d->maxDelay; return d->buff[tap]; } void tDelay_tapIn (tDelay* const d, float value, uint32_t tapDelay) { int32_t tap = d->inPoint - tapDelay - 1; // Check for wraparound. while ( tap < 0 ) tap += d->maxDelay; d->buff[tap] = value; } float tDelay_addTo (tDelay* const d, float value, uint32_t tapDelay) { int32_t tap = d->inPoint - tapDelay - 1; // Check for wraparound. while ( tap < 0 ) tap += d->maxDelay; return (d->buff[tap] += value); } uint32_t tDelay_getDelay (tDelay* const d) { return d->delay; } float tDelay_getLastOut (tDelay* const d) { return d->lastOut; } float tDelay_getLastIn (tDelay* const d) { return d->lastIn; } void tDelay_setGain (tDelay* const d, float gain) { if (gain < 0.0f) d->gain = 0.0f; else d->gain = gain; } float tDelay_getGain (tDelay* const d) { return d->gain; } // ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DelayL ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ // void tDelayL_init (tDelayL* const d, float delay, uint32_t maxDelay) { d->maxDelay = maxDelay; if (delay > maxDelay) d->delay = maxDelay; else if (delay < 0.0f) d->delay = 0.0f; else d->delay = delay; d->buff = (float*) leaf_alloc(sizeof(float) * maxDelay); d->gain = 1.0f; d->lastIn = 0.0f; d->lastOut = 0.0f; d->inPoint = 0; d->outPoint = 0; tDelayL_setDelay(d, d->delay); } void tDelayL_free(tDelayL* const d) { leaf_free(d->buff); leaf_free(d); } float tDelayL_tick (tDelayL* const d, float input) { d->buff[d->inPoint] = input * d->gain; // Increment input pointer modulo length. if (++(d->inPoint) == d->maxDelay ) d->inPoint = 0; uint32_t idx = (uint32_t) d->outPoint; d->lastOut = LEAF_interpolate_hermite (d->buff[((idx - 1) + d->maxDelay) % d->maxDelay], d->buff[idx], d->buff[(idx + 1) % d->maxDelay], d->buff[(idx + 2) % d->maxDelay], d->alpha); // Increment output pointer modulo length if ( (++d->outPoint) >= d->maxDelay ) d->outPoint = 0; return d->lastOut; } int tDelayL_setDelay (tDelayL* const d, float delay) { d->delay = LEAF_clip(0.0f, delay, d->maxDelay); float outPointer = d->inPoint - d->delay; while ( outPointer < 0 ) outPointer += d->maxDelay; // modulo maximum length d->outPoint = (uint32_t) outPointer; // integer part d->alpha = outPointer - d->outPoint; // fractional part d->omAlpha = 1.0f - d->alpha; if ( d->outPoint == d->maxDelay ) d->outPoint = 0; return 0; } float tDelayL_tapOut (tDelayL* const d, float tapDelay) { float tap = (float) d->inPoint - tapDelay - 1.f; // Check for wraparound. while ( tap < 0.f ) tap += (float)d->maxDelay; float alpha = tap - (int)tap; float omAlpha = 1.f - alpha; int ptx = (int) tap; // First 1/2 of interpolation float samp = d->buff[ptx] * omAlpha; // Second 1/2 of interpolation if ((ptx + 1) < d->maxDelay) samp += d->buff[ptx+1] * d->alpha; else samp += d->buff[0] * d->alpha; return samp; } void tDelayL_tapIn (tDelayL* const d, float value, uint32_t tapDelay) { int32_t tap = d->inPoint - tapDelay - 1; // Check for wraparound. while ( tap < 0 ) tap += d->maxDelay; d->buff[tap] = value; } float tDelayL_addTo (tDelayL* const d, float value, uint32_t tapDelay) { int32_t tap = d->inPoint - tapDelay - 1; // Check for wraparound. while ( tap < 0 ) tap += d->maxDelay; return (d->buff[tap] += value); } float tDelayL_getDelay (tDelayL *d) { return d->delay; } float tDelayL_getLastOut (tDelayL* const d) { return d->lastOut; } float tDelayL_getLastIn (tDelayL* const d) { return d->lastIn; } void tDelayL_setGain (tDelayL* const d, float gain) { if (gain < 0.0f) d->gain = 0.0f; else d->gain = gain; } float tDelayL_getGain (tDelayL* const d) { return d->gain; } // ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ DelayA ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ // void tDelayA_init (tDelayA* const d, float delay, uint32_t maxDelay) { d->maxDelay = maxDelay; if (delay > maxDelay) d->delay = maxDelay; else if (delay < 0.0f) d->delay = 0.0f; else d->delay = delay; d->buff = (float*) leaf_alloc(sizeof(float) * maxDelay); d->gain = 1.0f; d->lastIn = 0.0f; d->lastOut = 0.0f; d->inPoint = 0; d->outPoint = 0; tDelayA_setDelay(d, d->delay); d->apInput = 0.0f; } void tDelayA_free(tDelayA* const d) { leaf_free(d->buff); leaf_free(d); } float tDelayA_tick (tDelayA* const d, float input) { d->buff[d->inPoint] = input * d->gain; // Increment input pointer modulo length. if ( ++(d->inPoint) >= d->maxDelay ) d->inPoint = 0; // Do allpass interpolation delay. float out = d->lastOut * -d->coeff; out += d->apInput + ( d->coeff * d->buff[d->outPoint] ); d->lastOut = out; // Save allpass input d->apInput = d->buff[d->outPoint]; // Increment output pointer modulo length. if (++(d->outPoint) >= d->maxDelay ) d->outPoint = 0; return d->lastOut; } int tDelayA_setDelay (tDelayA* const d, float delay) { d->delay = LEAF_clip(0.5f, delay, d->maxDelay); // outPoint chases inPoint float outPointer = (float)d->inPoint - d->delay + 1.0f; while ( outPointer < 0 ) outPointer += d->maxDelay; // mod max length d->outPoint = (uint32_t) outPointer; // integer part if ( d->outPoint >= d->maxDelay ) d->outPoint = 0; d->alpha = 1.0f + (float)d->outPoint - outPointer; // fractional part if ( d->alpha < 0.5f ) { // The optimal range for alpha is about 0.5 - 1.5 in order to // achieve the flattest phase delay response. d->outPoint += 1; if ( d->outPoint >= d->maxDelay ) d->outPoint -= d->maxDelay; d->alpha += 1.0f; } d->coeff = (1.0f - d->alpha) / (1.0f + d->alpha); // coefficient for allpass return 0; } float tDelayA_tapOut (tDelayA* const d, uint32_t tapDelay) { int32_t tap = d->inPoint - tapDelay - 1; // Check for wraparound. while ( tap < 0 ) tap += d->maxDelay; return d->buff[tap]; } void tDelayA_tapIn (tDelayA* const d, float value, uint32_t tapDelay) { int32_t tap = d->inPoint - tapDelay - 1; // Check for wraparound. while ( tap < 0 ) tap += d->maxDelay; d->buff[tap] = value; } float tDelayA_addTo (tDelayA* const d, float value, uint32_t tapDelay) { int32_t tap = d->inPoint - tapDelay - 1; // Check for wraparound. while ( tap < 0 ) tap += d->maxDelay; return (d->buff[tap] += value); } float tDelayA_getDelay (tDelayA* const d) { return d->delay; } float tDelayA_getLastOut (tDelayA* const d) { return d->lastOut; } float tDelayA_getLastIn (tDelayA* const d) { return d->lastIn; } void tDelayA_setGain (tDelayA* const d, float gain) { if (gain < 0.0f) d->gain = 0.0f; else d->gain = gain; } float tDelayA_getGain (tDelayA* const d) { return d->gain; } // ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ TapeDelay ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ // void tTapeDelay_init (tTapeDelay* const d, float delay, uint32_t maxDelay) { d->maxDelay = maxDelay; d->delay = LEAF_clip(1.f, delay, d->maxDelay); d->buff = (float*) leaf_alloc(sizeof(float) * maxDelay); d->gain = 1.0f; d->lastIn = 0.0f; d->lastOut = 0.0f; d->idx = 0.0f; d->inc = 1.0f; d->inPoint = 0; tTapeDelay_setDelay(d, 1.f); } void tTapeDelay_free(tTapeDelay* const d) { leaf_free(d->buff); leaf_free(d); } int count = 0; #define SMOOTH_FACTOR 10.f float tTapeDelay_tick (tTapeDelay* const d, float input) { d->buff[d->inPoint] = input * d->gain; // Increment input pointer modulo length. if (++(d->inPoint) == d->maxDelay ) d->inPoint = 0; int idx = (int) d->idx; float alpha = d->idx - idx; d->lastOut = LEAF_interpolate_hermite (d->buff[((idx - 1) + d->maxDelay) % d->maxDelay], d->buff[idx], d->buff[(idx + 1) % d->maxDelay], d->buff[(idx + 2) % d->maxDelay], alpha); float diff = (d->inPoint - d->idx); while (diff < 0.f) diff += d->maxDelay; d->inc = 1.0f + (diff - d->delay) / d->delay * SMOOTH_FACTOR; d->idx += d->inc; if (d->idx >= d->maxDelay) d->idx = 0.f; return d->lastOut; } void tTapeDelay_setRate(tTapeDelay* const d, float rate) { d->inc = rate; } int tTapeDelay_setDelay (tTapeDelay* const d, float delay) { d->delay = LEAF_clip(1.f, delay, d->maxDelay); return 0; } float tTapeDelay_tapOut (tTapeDelay* const d, float tapDelay) { float tap = (float) d->inPoint - tapDelay - 1.f; // Check for wraparound. while ( tap < 0.f ) tap += (float)d->maxDelay; int idx = (int) tap; float alpha = tap - idx; float samp = LEAF_interpolate_hermite (d->buff[((idx - 1) + d->maxDelay) % d->maxDelay], d->buff[idx], d->buff[(idx + 1) % d->maxDelay], d->buff[(idx + 2) % d->maxDelay], alpha); return samp; } void tTapeDelay_tapIn (tTapeDelay* const d, float value, uint32_t tapDelay) { int32_t tap = d->inPoint - tapDelay - 1; // Check for wraparound. while ( tap < 0 ) tap += d->maxDelay; d->buff[tap] = value; } float tTapeDelay_addTo (tTapeDelay* const d, float value, uint32_t tapDelay) { int32_t tap = d->inPoint - tapDelay - 1; // Check for wraparound. while ( tap < 0 ) tap += d->maxDelay; return (d->buff[tap] += value); } float tTapeDelay_getDelay (tTapeDelay *d) { return d->delay; } float tTapeDelay_getLastOut (tTapeDelay* const d) { return d->lastOut; } float tTapeDelay_getLastIn (tTapeDelay* const d) { return d->lastIn; } void tTapeDelay_setGain (tTapeDelay* const d, float gain) { if (gain < 0.0f) d->gain = 0.0f; else d->gain = gain; } float tTapeDelay_getGain (tTapeDelay* const d) { return d->gain; }