ref: 2788a3510e621d1191849f5a03fd090de8bcba25
dir: /LEAF/Externals/d_fft_mayer.cpp/
/* ** FFT and FHT routines ** Copyright 1988, 1993; Ron Mayer ** ** mayer_fht(fz,n); ** Does a hartley transform of "n" points in the array "fz". ** mayer_fft(n,real,imag) ** Does a fourier transform of "n" points of the "real" and ** "imag" arrays. ** mayer_ifft(n,real,imag) ** Does an inverse fourier transform of "n" points of the "real" ** and "imag" arrays. ** mayer_realfft(n,real) ** Does a real-valued fourier transform of "n" points of the ** "real" array. The real part of the transform ends ** up in the first half of the array and the imaginary part of the ** transform ends up in the second half of the array. ** mayer_realifft(n,real) ** The inverse of the realfft() routine above. ** ** ** NOTE: This routine uses at least 2 patented algorithms, and may be ** under the restrictions of a bunch of different organizations. ** Although I wrote it completely myself, it is kind of a derivative ** of a routine I once authored and released under the GPL, so it ** may fall under the free software foundation's restrictions; ** it was worked on as a Stanford Univ project, so they claim ** some rights to it; it was further optimized at work here, so ** I think this company claims parts of it. The patents are ** held by R. Bracewell (the FHT algorithm) and O. Buneman (the ** trig generator), both at Stanford Univ. ** If it were up to me, I'd say go do whatever you want with it; ** but it would be polite to give credit to the following people ** if you use this anywhere: ** Euler - probable inventor of the fourier transform. ** Gauss - probable inventor of the FFT. ** Hartley - probable inventor of the hartley transform. ** Buneman - for a really cool trig generator ** Mayer(me) - for authoring this particular version and ** including all the optimizations in one package. ** Thanks, ** Ron Mayer; mayer@acuson.com ** */ /* This is a slightly modified version of Mayer's contribution; write * msp@ucsd.edu for the original code. Kudos to Mayer for a fine piece * of work. -msp */ /* * This, in turn, is an even more slightly modified version of MSP's adaptation * of Mayer's contribution. Kudos to all. -Mike Mulshine, Jeff Snyder, Princeton University */ #include "../Externals/d_fft_mayer.h" #define REAL t_sample #define GOOD_TRIG #ifdef GOOD_TRIG #else #define FAST_TRIG #endif #if defined(GOOD_TRIG) #define FHT_SWAP(a,b,t) {(t)=(a);(a)=(b);(b)=(t);} #define TRIG_VARS \ int t_lam=0; #define TRIG_INIT(k,c,s) \ { \ int i; \ for (i=2 ; i<=k ; i++) \ {coswrk[i]=costab[i];sinwrk[i]=sintab[i];} \ t_lam = 0; \ c = 1; \ s = 0; \ } #define TRIG_NEXT(k,c,s) \ { \ int i,j; \ (t_lam)++; \ for (i=0 ; !((1<<i)&t_lam) ; i++); \ i = k-i; \ s = sinwrk[i]; \ c = coswrk[i]; \ if (i>1) \ { \ for (j=k-i+2 ; (1<<j)&t_lam ; j++); \ j = k - j; \ sinwrk[i] = halsec[i] * (sinwrk[i-1] + sinwrk[j]); \ coswrk[i] = halsec[i] * (coswrk[i-1] + coswrk[j]); \ } \ } #define TRIG_RESET(k,c,s) #endif #if defined(FAST_TRIG) #define TRIG_VARS \ REAL t_c,t_s; #define TRIG_INIT(k,c,s) \ { \ t_c = costab[k]; \ t_s = sintab[k]; \ c = 1; \ s = 0; \ } #define TRIG_NEXT(k,c,s) \ { \ REAL t = c; \ c = t*t_c - s*t_s; \ s = t*t_s + s*t_c; \ } #define TRIG_RESET(k,c,s) #endif static REAL halsec[20]= { 0, 0, .54119610014619698439972320536638942006107206337801, .50979557910415916894193980398784391368261849190893, .50241928618815570551167011928012092247859337193963, .50060299823519630134550410676638239611758632599591, .50015063602065098821477101271097658495974913010340, .50003765191554772296778139077905492847503165398345, .50000941253588775676512870469186533538523133757983, .50000235310628608051401267171204408939326297376426, .50000058827484117879868526730916804925780637276181, .50000014706860214875463798283871198206179118093251, .50000003676714377807315864400643020315103490883972, .50000000919178552207366560348853455333939112569380, .50000000229794635411562887767906868558991922348920, .50000000057448658687873302235147272458812263401372 }; static REAL costab[20]= { .00000000000000000000000000000000000000000000000000, .70710678118654752440084436210484903928483593768847, .92387953251128675612818318939678828682241662586364, .98078528040323044912618223613423903697393373089333, .99518472667219688624483695310947992157547486872985, .99879545620517239271477160475910069444320361470461, .99969881869620422011576564966617219685006108125772, .99992470183914454092164649119638322435060646880221, .99998117528260114265699043772856771617391725094433, .99999529380957617151158012570011989955298763362218, .99999882345170190992902571017152601904826792288976, .99999970586288221916022821773876567711626389934930, .99999992646571785114473148070738785694820115568892, .99999998161642929380834691540290971450507605124278, .99999999540410731289097193313960614895889430318945, .99999999885102682756267330779455410840053741619428 }; static REAL sintab[20]= { 1.0000000000000000000000000000000000000000000000000, .70710678118654752440084436210484903928483593768846, .38268343236508977172845998403039886676134456248561, .19509032201612826784828486847702224092769161775195, .09801714032956060199419556388864184586113667316749, .04906767432741801425495497694268265831474536302574, .02454122852291228803173452945928292506546611923944, .01227153828571992607940826195100321214037231959176, .00613588464915447535964023459037258091705788631738, .00306795676296597627014536549091984251894461021344, .00153398018628476561230369715026407907995486457522, .00076699031874270452693856835794857664314091945205, .00038349518757139558907246168118138126339502603495, .00019174759731070330743990956198900093346887403385, .00009587379909597734587051721097647635118706561284, .00004793689960306688454900399049465887274686668768 }; static REAL coswrk[20]= { .00000000000000000000000000000000000000000000000000, .70710678118654752440084436210484903928483593768847, .92387953251128675612818318939678828682241662586364, .98078528040323044912618223613423903697393373089333, .99518472667219688624483695310947992157547486872985, .99879545620517239271477160475910069444320361470461, .99969881869620422011576564966617219685006108125772, .99992470183914454092164649119638322435060646880221, .99998117528260114265699043772856771617391725094433, .99999529380957617151158012570011989955298763362218, .99999882345170190992902571017152601904826792288976, .99999970586288221916022821773876567711626389934930, .99999992646571785114473148070738785694820115568892, .99999998161642929380834691540290971450507605124278, .99999999540410731289097193313960614895889430318945, .99999999885102682756267330779455410840053741619428 }; static REAL sinwrk[20]= { 1.0000000000000000000000000000000000000000000000000, .70710678118654752440084436210484903928483593768846, .38268343236508977172845998403039886676134456248561, .19509032201612826784828486847702224092769161775195, .09801714032956060199419556388864184586113667316749, .04906767432741801425495497694268265831474536302574, .02454122852291228803173452945928292506546611923944, .01227153828571992607940826195100321214037231959176, .00613588464915447535964023459037258091705788631738, .00306795676296597627014536549091984251894461021344, .00153398018628476561230369715026407907995486457522, .00076699031874270452693856835794857664314091945205, .00038349518757139558907246168118138126339502603495, .00019174759731070330743990956198900093346887403385, .00009587379909597734587051721097647635118706561284, .00004793689960306688454900399049465887274686668768 }; #define SQRT2_2 0.70710678118654752440084436210484 #define SQRT2 2*0.70710678118654752440084436210484 void mayer_fht(REAL *fz, int n) { /* REAL a,b; REAL c1,s1,s2,c2,s3,c3,s4,c4; REAL f0,g0,f1,g1,f2,g2,f3,g3; */ int k,k1,k2,k3,k4,kx; REAL *fi,*fn,*gi; TRIG_VARS; for (k1=1,k2=0;k1<n;k1++) { REAL aa; for (k=n>>1; (!((k2^=k)&k)); k>>=1); if (k1>k2) { aa=fz[k1];fz[k1]=fz[k2];fz[k2]=aa; } } for ( k=0 ; (1<<k)<n ; k++ ); k &= 1; if (k==0) { for (fi=fz,fn=fz+n;fi<fn;fi+=4) { REAL f0,f1,f2,f3; f1 = fi[0 ]-fi[1 ]; f0 = fi[0 ]+fi[1 ]; f3 = fi[2 ]-fi[3 ]; f2 = fi[2 ]+fi[3 ]; fi[2 ] = (f0-f2); fi[0 ] = (f0+f2); fi[3 ] = (f1-f3); fi[1 ] = (f1+f3); } } else { for (fi=fz,fn=fz+n,gi=fi+1;fi<fn;fi+=8,gi+=8) { REAL bs1,bc1,bs2,bc2,bs3,bc3,bs4,bc4, bg0,bf0,bf1,bg1,bf2,bg2,bf3,bg3; bc1 = fi[0 ] - gi[0 ]; bs1 = fi[0 ] + gi[0 ]; bc2 = fi[2 ] - gi[2 ]; bs2 = fi[2 ] + gi[2 ]; bc3 = fi[4 ] - gi[4 ]; bs3 = fi[4 ] + gi[4 ]; bc4 = fi[6 ] - gi[6 ]; bs4 = fi[6 ] + gi[6 ]; bf1 = (bs1 - bs2); bf0 = (bs1 + bs2); bg1 = (bc1 - bc2); bg0 = (bc1 + bc2); bf3 = (bs3 - bs4); bf2 = (bs3 + bs4); bg3 = SQRT2*bc4; bg2 = SQRT2*bc3; fi[4 ] = bf0 - bf2; fi[0 ] = bf0 + bf2; fi[6 ] = bf1 - bf3; fi[2 ] = bf1 + bf3; gi[4 ] = bg0 - bg2; gi[0 ] = bg0 + bg2; gi[6 ] = bg1 - bg3; gi[2 ] = bg1 + bg3; } } if (n<16) return; do { REAL s1,c1; int ii; k += 2; k1 = 1 << k; k2 = k1 << 1; k4 = k2 << 1; k3 = k2 + k1; kx = k1 >> 1; fi = fz; gi = fi + kx; fn = fz + n; do { REAL g0,f0,f1,g1,f2,g2,f3,g3; f1 = fi[0 ] - fi[k1]; f0 = fi[0 ] + fi[k1]; f3 = fi[k2] - fi[k3]; f2 = fi[k2] + fi[k3]; fi[k2] = f0 - f2; fi[0 ] = f0 + f2; fi[k3] = f1 - f3; fi[k1] = f1 + f3; g1 = gi[0 ] - gi[k1]; g0 = gi[0 ] + gi[k1]; g3 = SQRT2 * gi[k3]; g2 = SQRT2 * gi[k2]; gi[k2] = g0 - g2; gi[0 ] = g0 + g2; gi[k3] = g1 - g3; gi[k1] = g1 + g3; gi += k4; fi += k4; } while (fi<fn); TRIG_INIT(k,c1,s1); for (ii=1;ii<kx;ii++) { REAL c2,s2; TRIG_NEXT(k,c1,s1); c2 = c1*c1 - s1*s1; s2 = 2*(c1*s1); fn = fz + n; fi = fz +ii; gi = fz +k1-ii; do { REAL a,b,g0,f0,f1,g1,f2,g2,f3,g3; b = s2*fi[k1] - c2*gi[k1]; a = c2*fi[k1] + s2*gi[k1]; f1 = fi[0 ] - a; f0 = fi[0 ] + a; g1 = gi[0 ] - b; g0 = gi[0 ] + b; b = s2*fi[k3] - c2*gi[k3]; a = c2*fi[k3] + s2*gi[k3]; f3 = fi[k2] - a; f2 = fi[k2] + a; g3 = gi[k2] - b; g2 = gi[k2] + b; b = s1*f2 - c1*g3; a = c1*f2 + s1*g3; fi[k2] = f0 - a; fi[0 ] = f0 + a; gi[k3] = g1 - b; gi[k1] = g1 + b; b = c1*g2 - s1*f3; a = s1*g2 + c1*f3; gi[k2] = g0 - a; gi[0 ] = g0 + a; fi[k3] = f1 - b; fi[k1] = f1 + b; gi += k4; fi += k4; } while (fi<fn); } TRIG_RESET(k,c1,s1); } while (k4<n); } void mayer_fft(int n, REAL *real, REAL *imag) { REAL a,b,c,d; REAL q,r,s,t; int i,j,k; for (i=1,j=n-1,k=n/2;i<k;i++,j--) { a = real[i]; b = real[j]; q=a+b; r=a-b; c = imag[i]; d = imag[j]; s=c+d; t=c-d; real[i] = (q+t)*.5; real[j] = (q-t)*.5; imag[i] = (s-r)*.5; imag[j] = (s+r)*.5; } mayer_fht(real,n); mayer_fht(imag,n); } void mayer_ifft(int n, REAL *real, REAL *imag) { REAL a,b,c,d; REAL q,r,s,t; int i,j,k; mayer_fht(real,n); mayer_fht(imag,n); for (i=1,j=n-1,k=n/2;i<k;i++,j--) { a = real[i]; b = real[j]; q=a+b; r=a-b; c = imag[i]; d = imag[j]; s=c+d; t=c-d; imag[i] = (s+r)*0.5; imag[j] = (s-r)*0.5; real[i] = (q-t)*0.5; real[j] = (q+t)*0.5; } } void mayer_realfft(int n, REAL *real) { REAL a,b,c,d; int i,j,k; mayer_fht(real,n); for (i=1,j=n-1,k=n/2;i<k;i++,j--) { a = real[i]; b = real[j]; real[j] = (a-b)*0.5; real[i] = (a+b)*0.5; } } void mayer_realifft(int n, REAL *real) { REAL a,b,c,d; int i,j,k; for (i=1,j=n-1,k=n/2;i<k;i++,j--) { a = real[i]; b = real[j]; real[j] = (a-b); real[i] = (a+b); } mayer_fht(real,n); }