ref: 21f5ac6f65245a6d5f1b63b0f1a38d4001f1d5dc
dir: /LEAF/Src/main.c/
/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * <h2><center>© Copyright (c) 2019 STMicroelectronics. * All rights reserved.</center></h2> * * This software component is licensed by ST under Ultimate Liberty license * SLA0044, the "License"; You may not use this file except in compliance with * the License. You may obtain a copy of the License at: * www.st.com/SLA0044 * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "adc.h" #include "bdma.h" #include "dma.h" #include "fatfs.h" #include "i2c.h" #include "rng.h" #include "sai.h" #include "sdmmc.h" #include "tim.h" #include "usb_host.h" #include "gpio.h" #include "fmc.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "ui.h" #include "leaf.h" #include "audiostream.h" #include "eeprom.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ uint16_t count; //FLASH storage EEPROM emulation variables FLASH_OBProgramInitTypeDef OBInit; uint16_t VarDataTab = 0; uint16_t VarValue = 0; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void MX_USB_HOST_Process(void); /* USER CODE BEGIN PFP */ void MPU_Conf(void); void SDRAM_Initialization_sequence(void); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ MPU_Conf(); /* USER CODE END 1 */ /* Enable I-Cache---------------------------------------------------------*/ SCB_EnableICache(); /* Enable D-Cache---------------------------------------------------------*/ SCB_EnableDCache(); /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ //disabling I and D cache because they cause issues with the USB initialization when -o3 optimization is on /* Enable I-Cache---------------------------------------------------------*/ SCB_DisableICache(); /* Enable D-Cache---------------------------------------------------------*/ SCB_DisableDCache(); /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_BDMA_Init(); MX_DMA_Init(); MX_FMC_Init(); MX_ADC1_Init(); MX_I2C2_Init(); MX_SDMMC1_SD_Init(); MX_FATFS_Init(); MX_SAI1_Init(); MX_RNG_Init(); MX_I2C4_Init(); MX_USB_HOST_Init(); MX_TIM3_Init(); MX_TIM4_Init(); /* USER CODE BEGIN 2 */ /// it seems we need to enable caching after setting up the USB Host Controller - // otherwise turning on -o3 optimization causes unreliable behavior where it's not set up correctly and never reaches the USB interrupt for connection /* Enable I-Cache---------------------------------------------------------*/ SCB_EnableICache(); /* Enable D-Cache---------------------------------------------------------*/ SCB_EnableDCache(); //HAL_Delay(1); // Emulated EEPROM Init HAL_FLASH_Unlock(); if( EE_Init() != EE_OK) { Error_Handler(); } if((EE_ReadVariable(VirtAddVarTab[0], &VarDataTab)) != HAL_OK) // read what the preset was before last power-off { //if it can't read something, it's probably because this brain has never been programmed, so write a value in there to start with if((EE_WriteVariable(VirtAddVarTab[0], 0)) != HAL_OK) { Error_Handler(); } } if (VarDataTab < PresetNil) //make sure the stored data is a number not past the number of available presets { currentPreset = VarDataTab; //if it's good, start at that remembered preset number } else { currentPreset = 0; //if the data is messed up for some reason, just initialize at the first preset (preset 0) } //pull reset pin on audio codec low to make sure it's stable HAL_GPIO_WritePin(GPIOC, GPIO_PIN_14, GPIO_PIN_RESET); uint32_t tempFPURegisterVal = __get_FPSCR(); tempFPURegisterVal |= (1<<24); // set the FTZ (flush-to-zero) bit in the FPU control register __set_FPSCR(tempFPURegisterVal); HAL_ADCEx_Calibration_Start(&hadc1, ADC_CALIB_OFFSET, ADC_SINGLE_ENDED); if (HAL_ADC_Start_DMA(&hadc1,(uint32_t*)&ADC_values, NUM_ADC_CHANNELS) != HAL_OK) { Error_Handler(); } HAL_Delay(10); OLED_init(&hi2c4); //HAL_Delay(10); SDRAM_Initialization_sequence(); audioInit(&hi2c2, &hsai_BlockA1, &hsai_BlockB1); OLED_writePreset(); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ MX_USB_HOST_Process(); /* USER CODE BEGIN 3 */ if (hi2c4.State == HAL_I2C_STATE_READY) { OLED_draw(); } } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0}; /** Supply configuration update enable */ HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY); /** Configure the main internal regulator output voltage */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE0); while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {} /** Macro to configure the PLL clock source */ __HAL_RCC_PLL_PLLSOURCE_CONFIG(RCC_PLLSOURCE_HSE); /** Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI48|RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSI48State = RCC_HSI48_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 10; RCC_OscInitStruct.PLL.PLLN = 384; RCC_OscInitStruct.PLL.PLLP = 2; RCC_OscInitStruct.PLL.PLLQ = 3; RCC_OscInitStruct.PLL.PLLR = 2; RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_1; RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE; RCC_OscInitStruct.PLL.PLLFRACN = 0; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2 |RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV2; RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV2; RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) { Error_Handler(); } PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RNG|RCC_PERIPHCLK_SAI1 |RCC_PERIPHCLK_SDMMC|RCC_PERIPHCLK_I2C2 |RCC_PERIPHCLK_ADC|RCC_PERIPHCLK_I2C4 |RCC_PERIPHCLK_USB|RCC_PERIPHCLK_FMC; PeriphClkInitStruct.PLL2.PLL2M = 25; PeriphClkInitStruct.PLL2.PLL2N = 344; PeriphClkInitStruct.PLL2.PLL2P = 7; PeriphClkInitStruct.PLL2.PLL2Q = 2; PeriphClkInitStruct.PLL2.PLL2R = 1; PeriphClkInitStruct.PLL2.PLL2RGE = RCC_PLL2VCIRANGE_0; PeriphClkInitStruct.PLL2.PLL2VCOSEL = RCC_PLL2VCOWIDE; PeriphClkInitStruct.PLL2.PLL2FRACN = 0; PeriphClkInitStruct.PLL3.PLL3M = 25; PeriphClkInitStruct.PLL3.PLL3N = 384; PeriphClkInitStruct.PLL3.PLL3P = 2; PeriphClkInitStruct.PLL3.PLL3Q = 8; PeriphClkInitStruct.PLL3.PLL3R = 2; PeriphClkInitStruct.PLL3.PLL3RGE = RCC_PLL3VCIRANGE_0; PeriphClkInitStruct.PLL3.PLL3VCOSEL = RCC_PLL3VCOWIDE; PeriphClkInitStruct.PLL3.PLL3FRACN = 0; PeriphClkInitStruct.FmcClockSelection = RCC_FMCCLKSOURCE_D1HCLK; PeriphClkInitStruct.SdmmcClockSelection = RCC_SDMMCCLKSOURCE_PLL; PeriphClkInitStruct.Sai1ClockSelection = RCC_SAI1CLKSOURCE_PLL2; PeriphClkInitStruct.RngClockSelection = RCC_RNGCLKSOURCE_HSI48; PeriphClkInitStruct.I2c123ClockSelection = RCC_I2C123CLKSOURCE_D2PCLK1; PeriphClkInitStruct.UsbClockSelection = RCC_USBCLKSOURCE_PLL3; PeriphClkInitStruct.I2c4ClockSelection = RCC_I2C4CLKSOURCE_D3PCLK1; PeriphClkInitStruct.AdcClockSelection = RCC_ADCCLKSOURCE_PLL2; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) { Error_Handler(); } /** Enable USB Voltage detector */ HAL_PWREx_EnableUSBVoltageDetector(); } /* USER CODE BEGIN 4 */ void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc) { //HAL_MDMA_Start_IT(&hmdma_mdma_channel40_dma1_stream0_tc_0, (uint32_t)&ADC_valuesDMA, (uint32_t)&ADC_values, 10, 1); } void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef *hadc) { ; } #define SDRAM_TIMEOUT ((uint32_t)0xFFFF) #define SDRAM_MODEREG_BURST_LENGTH_1 ((uint16_t)0x0000) #define SDRAM_MODEREG_BURST_LENGTH_2 ((uint16_t)0x0001) #define SDRAM_MODEREG_BURST_LENGTH_4 ((uint16_t)0x0002) #define SDRAM_MODEREG_BURST_LENGTH_8 ((uint16_t)0x0003) #define SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL ((uint16_t)0x0000) #define SDRAM_MODEREG_BURST_TYPE_INTERLEAVED ((uint16_t)0x0008) #define SDRAM_MODEREG_CAS_LATENCY_2 ((uint16_t)0x0020) #define SDRAM_MODEREG_CAS_LATENCY_3 ((uint16_t)0x0030) #define SDRAM_MODEREG_OPERATING_MODE_STANDARD ((uint16_t)0x0000) #define SDRAM_MODEREG_WRITEBURST_MODE_PROGRAMMED ((uint16_t)0x0000) #define SDRAM_MODEREG_WRITEBURST_MODE_SINGLE ((uint16_t)0x0200) //#define SDRAM_REFRESH_COUNT ((uint32_t)956)// 7.9us in cycles of 8.333333ns + 20 cycles as recommended by datasheet page 866/3289 for STM32H743 #define SDRAM_REFRESH_COUNT ((uint32_t)0x0569)// 7.9us in cycles of 8.333333ns + 20 cycles as recommended by datasheet page 866/3289 for STM32H743 void SDRAM_Initialization_sequence(void) { __IO uint32_t tmpmrd = 0; FMC_SDRAM_CommandTypeDef Command; /* Step 1: Configure a clock configuration enable command */ Command.CommandMode = FMC_SDRAM_CMD_CLK_ENABLE; Command.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1; Command.AutoRefreshNumber = 1; Command.ModeRegisterDefinition = 0; /* Send the command */ HAL_SDRAM_SendCommand(&hsdram1, &Command, SDRAM_TIMEOUT); /* Step 2: Insert 100 us minimum delay */ /* Inserted delay is equal to 1 ms due to systick time base unit (ms) */ HAL_Delay(1); /* Step 3: Configure a PALL (precharge all) command */ Command.CommandMode = FMC_SDRAM_CMD_PALL; Command.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1; Command.AutoRefreshNumber = 1; Command.ModeRegisterDefinition = 0; /* Send the command */ HAL_SDRAM_SendCommand(&hsdram1, &Command, SDRAM_TIMEOUT); /* Step 5: Program the external memory mode register */ tmpmrd = (uint32_t)SDRAM_MODEREG_BURST_LENGTH_4 | SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL | SDRAM_MODEREG_CAS_LATENCY_2 | SDRAM_MODEREG_OPERATING_MODE_STANDARD | SDRAM_MODEREG_WRITEBURST_MODE_SINGLE; Command.CommandMode = FMC_SDRAM_CMD_LOAD_MODE; Command.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1; Command.AutoRefreshNumber = 1; Command.ModeRegisterDefinition = tmpmrd; /* Send the command */ HAL_SDRAM_SendCommand(&hsdram1, &Command, SDRAM_TIMEOUT); /* Step 4: Configure the 1st Auto Refresh command */ Command.CommandMode = FMC_SDRAM_CMD_AUTOREFRESH_MODE; Command.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1; Command.AutoRefreshNumber = 8; Command.ModeRegisterDefinition = 0; /* Send the command */ HAL_SDRAM_SendCommand(&hsdram1, &Command, SDRAM_TIMEOUT); /* Step 2: Insert 100 us minimum delay */ /* Inserted delay is equal to 1 ms due to systick time base unit (ms) */ HAL_Delay(1); /* Step 5: Configure the 2nd Auto Refresh command */ Command.CommandMode = FMC_SDRAM_CMD_AUTOREFRESH_MODE; Command.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1; Command.AutoRefreshNumber = 8; Command.ModeRegisterDefinition = 0; /* Send the command */ HAL_SDRAM_SendCommand(&hsdram1, &Command, SDRAM_TIMEOUT); /* Step 6: Set the refresh rate counter */ /* Set the device refresh rate */ HAL_SDRAM_ProgramRefreshRate(&hsdram1, SDRAM_REFRESH_COUNT); } float randomNumber(void) { uint32_t rand; HAL_RNG_GenerateRandomNumber(&hrng, &rand); float num = (float)rand * INV_TWO_TO_32; return num; } void MPU_Conf(void) { //code from Keshikan https://github.com/keshikan/STM32H7_DMA_sample //Thanks, Keshikan! This solves the issues with accessing the SRAM in the D2 area properly. -JS //should test the different possible settings to see what works best while avoiding needing to manually clear the cache -JS MPU_Region_InitTypeDef MPU_InitStruct; HAL_MPU_Disable(); //currently leaving D1 SRAM not configured by the MPU - just set as normal default memory. //the following code configures D2 and D3 SRAM MPU_InitStruct.Enable = MPU_REGION_ENABLE; //D2 Domain�SRAM1 MPU_InitStruct.BaseAddress = 0x30000000; // Increased region size to 256k. In Keshikan's code, this was 512 bytes (that's all that application needed). // Each audio buffer takes up the frame size * 8 (16 bits makes it *2 and stereo makes it *2 and double buffering makes it *2) // So a buffer size for read/write of 4096 would take up 64k = 4096*8 * 2 (read and write). // I increased that to 256k so that there would be room for the ADC knob inputs and other peripherals that might require DMA access. // we have a total of 256k in SRAM1 (128k, 0x30000000-0x30020000) and SRAM2 (128k, 0x30020000-0x3004000) of D2 domain. // There is an SRAM3 in D2 domain as well (32k, 0x30040000-0x3004800) that is currently not mapped by the MPU (memory protection unit) controller. MPU_InitStruct.Size = MPU_REGION_SIZE_256KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; //AN4838 MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL1; MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE; MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; //Shared Device //MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; //MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE; //MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE; //MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER1; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); //now set up D3 domain RAM MPU_InitStruct.Enable = MPU_REGION_ENABLE; //D3 Domain�SRAM1 MPU_InitStruct.BaseAddress = 0x38000000; MPU_InitStruct.Size = MPU_REGION_SIZE_64KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; //AN4838 MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL1; MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE; MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; //Shared Device // MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; // MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE; // MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE; // MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER2; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT); } volatile uint32_t r0; volatile uint32_t r1; volatile uint32_t r2; volatile uint32_t r3; volatile uint32_t r12; volatile uint32_t lr; // Link register. volatile uint32_t pc; // Program counter. volatile uint32_t psr;// Program status register. /* static void HardFault_Handler(void) { __asm volatile ( " tst lr, #4 n" " ite eq n" " mrseq r0, msp n" " mrsne r0, psp n" " ldr r1, [r0, #24] n" " ldr r2, handler2_address_const n" " bx r2 n" " handler2_address_const: .word prvGetRegistersFromStack n" ); } */ void prvGetRegistersFromStack( uint32_t *pulFaultStackAddress ) { //These are volatile to try and prevent the compiler/linker optimising them //away as the variables never actually get used. If the debugger won't show the //values of the variables, make them global by moving their declaration outside //of this function. r0 = pulFaultStackAddress[ 0 ]; r1 = pulFaultStackAddress[ 1 ]; r2 = pulFaultStackAddress[ 2 ]; r3 = pulFaultStackAddress[ 3 ]; r12 = pulFaultStackAddress[ 4 ]; lr = pulFaultStackAddress[ 5 ]; pc = pulFaultStackAddress[ 6 ]; psr = pulFaultStackAddress[ 7 ]; // When the following line is hit, the variables contain the register values. for( ;; ); } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ while(1) { ; } /* The prototype shows it is a naked function - in effect this is just an assembly function. */ /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/