ref: 3e7b18472cba687a04f6cd9be66ad531ed24283c
dir: /src/ft2_replayer.c/
// for finding memory leaks in debug mode with Visual Studio
#if defined _DEBUG && defined _MSC_VER
#include <crtdbg.h>
#endif
#include <stdint.h>
#include <stdio.h>
#include <math.h>
#include "ft2_header.h"
#include "ft2_config.h"
#include "ft2_gui.h"
#include "ft2_video.h"
#include "ft2_pattern_ed.h"
#include "ft2_sample_ed.h"
#include "ft2_inst_ed.h"
#include "ft2_diskop.h"
#include "ft2_midi.h"
#include "ft2_scopes.h"
#include "ft2_mouse.h"
#include "ft2_sample_loader.h"
#include "ft2_tables.h"
#include "ft2_structs.h"
#include "mixer/ft2_windowed_sinc.h"
/* This is a mess, directly ported from the original FT2 code (with some modifications).
** You will experience a lot of headaches if you dig into it...
** If something looks to be off, it probably isn't!
*/
static double dLogTab[768], dExp2MulTab[32];
static bool bxxOverflow;
static tonTyp nilPatternLine[MAX_VOICES];
typedef void (*volKolEfxRoutine)(stmTyp *ch);
typedef void (*volKolEfxRoutine2)(stmTyp *ch, uint8_t *volKol);
typedef void (*efxRoutine)(stmTyp *ch, uint8_t param);
// globally accessed
int8_t playMode = 0;
bool songPlaying = false, audioPaused = false, musicPaused = false;
volatile bool replayerBusy = false;
const uint16_t *note2Period = NULL;
int16_t pattLens[MAX_PATTERNS];
stmTyp stm[MAX_VOICES];
songTyp song;
instrTyp *instr[132];
tonTyp *patt[MAX_PATTERNS];
// ----------------------------------
void fixString(char *str, int32_t lastChrPos) // removes leading spaces and 0x1A chars
{
for (int32_t i = lastChrPos; i >= 0; i--)
{
if (str[i] == ' ' || str[i] == 0x1A)
str[i] = '\0';
else if (str[i] != '\0')
break;
}
str[lastChrPos+1] = '\0';
}
void fixSongName(void)
{
fixString(song.name, 19);
}
void fixInstrAndSampleNames(int16_t nr)
{
fixString(song.instrName[nr], 21);
if (instr[nr] != NULL)
{
sampleTyp *s = instr[nr]->samp;
for (int32_t i = 0; i < MAX_SMP_PER_INST; i++, s++)
fixString(s->name, 21);
}
}
void resetChannels(void)
{
const bool audioWasntLocked = !audio.locked;
if (audioWasntLocked)
lockAudio();
memset(stm, 0, sizeof (stm));
stmTyp *ch = stm;
for (int32_t i = 0; i < MAX_VOICES; i++, ch++)
{
ch->instrPtr = instr[0];
ch->status = IS_Vol;
ch->oldPan = 128;
ch->outPan = 128;
ch->finalPan = 128;
ch->stOff = !editor.chnMode[i]; // set channel mute flag from global mute flag
}
if (audioWasntLocked)
unlockAudio();
}
void setSongModifiedFlag(void)
{
song.isModified = true;
editor.updateWindowTitle = true;
}
void removeSongModifiedFlag(void)
{
song.isModified = false;
editor.updateWindowTitle = true;
}
// used on external sample load and during sample loading in some module formats
void tuneSample(sampleTyp *s, const int32_t midCFreq, bool linearPeriodsFlag)
{
#define NOTE_C4 (4*12)
#define MIN_PERIOD (0)
#define MAX_PERIOD (((10*12*16)-1)-1) /* -1 (because of bugged amigaPeriods table values) */
double (*dGetHzFromPeriod)(int32_t) = linearPeriodsFlag ? dLinearPeriod2Hz : dAmigaPeriod2Hz;
const uint16_t *periodTab = linearPeriodsFlag ? linearPeriods : amigaPeriods;
if (midCFreq <= 0 || periodTab == NULL)
{
s->fine = s->relTon = 0;
return;
}
// handle frequency boundaries first...
if (midCFreq <= (int32_t)dGetHzFromPeriod(periodTab[MIN_PERIOD]))
{
s->fine = -128;
s->relTon = -48;
return;
}
if (midCFreq >= (int32_t)dGetHzFromPeriod(periodTab[MAX_PERIOD]))
{
s->fine = 127;
s->relTon = 71;
return;
}
// check if midCFreq is matching any of the non-finetuned note frequencies (C-0..B-9)
for (int8_t i = 0; i < 10*12; i++)
{
if (midCFreq == (int32_t)dGetHzFromPeriod(periodTab[16 + (i<<4)]))
{
s->fine = 0;
s->relTon = i - NOTE_C4;
return;
}
}
// find closest frequency in period table
int32_t period = MAX_PERIOD;
for (; period >= MIN_PERIOD; period--)
{
const int32_t curr = (int32_t)dGetHzFromPeriod(periodTab[period]);
if (midCFreq == curr)
break;
if (midCFreq > curr)
{
const int32_t next = (int32_t)dGetHzFromPeriod(periodTab[period+1]);
const int32_t errorCurr = ABS(curr-midCFreq);
const int32_t errorNext = ABS(next-midCFreq);
if (errorCurr <= errorNext)
break; // current is the closest
period++;
break; // current+1 is the closest
}
}
s->fine = ((period & 31) - 16) << 3;
s->relTon = (int8_t)(((period & ~31) >> 4) - NOTE_C4);
}
void setPatternLen(uint16_t nr, int16_t len)
{
assert(nr < MAX_PATTERNS);
if ((len < 1 || len > MAX_PATT_LEN) || len == pattLens[nr])
return;
const bool audioWasntLocked = !audio.locked;
if (audioWasntLocked)
lockAudio();
pattLens[nr] = len;
if (patt[nr] != NULL)
killPatternIfUnused(nr);
song.pattLen = pattLens[nr];
if (song.pattPos >= song.pattLen)
{
song.pattPos = song.pattLen - 1;
editor.pattPos = song.pattPos;
}
checkMarkLimits();
if (audioWasntLocked)
unlockAudio();
ui.updatePatternEditor = true;
ui.updatePosSections = true;
}
int16_t getUsedSamples(int16_t nr)
{
if (instr[nr] == NULL)
return 0;
instrTyp *ins = instr[nr];
int16_t i = 16 - 1;
while (i >= 0 && ins->samp[i].pek == NULL && ins->samp[i].name[0] == '\0')
i--;
/* Yes, 'i' can be -1 here, and will be set to at least 0
** because of ins->ta values. Possibly an FT2 bug...
*/
for (int16_t j = 0; j < 96; j++)
{
if (ins->ta[j] > i)
i = ins->ta[j];
}
return i+1;
}
int16_t getRealUsedSamples(int16_t nr)
{
if (instr[nr] == NULL)
return 0;
int8_t i = 16 - 1;
while (i >= 0 && instr[nr]->samp[i].pek == NULL)
i--;
return i+1;
}
double dLinearPeriod2Hz(int32_t period)
{
if (period == 0)
return 0.0; // in FT2, a period of 0 results in 0Hz
const uint16_t invPeriod = (12 * 192 * 4) - (uint16_t)period; // intentionally underflows (uint16_t) to be FT2-accurate
const int32_t quotient = invPeriod / 768;
const int32_t remainder = invPeriod % 768;
return dLogTab[remainder] * dExp2MulTab[(14-quotient) & 31]; // x = y / 2^((14-quotient) & 31)
}
double dAmigaPeriod2Hz(int32_t period)
{
if (period == 0)
return 0.0; // in FT2, a period of 0 results in 0Hz
return (double)(8363 * 1712) / period;
}
double dPeriod2Hz(int32_t period)
{
return audio.linearPeriodsFlag ? dLinearPeriod2Hz(period) : dAmigaPeriod2Hz(period);
}
// returns *exact* FT2 C-4 voice rate (depending on finetune, relative note and linear/Amiga period mode)
double getSampleC4Rate(sampleTyp *s)
{
int32_t note = (96/2) + s->relTon;
if (note >= (10*12)-1)
return -1; // B-9 (from relTon) = illegal! (won't play in replayer)
const int32_t C4Period = (note << 4) + (((int8_t)s->fine >> 3) + 16);
const uint16_t period = audio.linearPeriodsFlag ? linearPeriods[C4Period] : amigaPeriods[C4Period];
return dPeriod2Hz(period);
}
void setFrqTab(bool linear)
{
pauseAudio();
audio.linearPeriodsFlag = linear;
if (audio.linearPeriodsFlag)
note2Period = linearPeriods;
else
note2Period = amigaPeriods;
resumeAudio();
if (ui.configScreenShown && editor.currConfigScreen == CONFIG_SCREEN_IO_DEVICES)
{
// update "frequency table" radiobutton, if it's shown
setConfigIORadioButtonStates();
// update mid-C freq. in instr. editor (it can slightly differ between Amiga/linear)
if (ui.instEditorShown)
drawC4Rate();
}
}
static void retrigVolume(stmTyp *ch)
{
ch->realVol = ch->oldVol;
ch->outVol = ch->oldVol;
ch->outPan = ch->oldPan;
ch->status |= IS_Vol + IS_Pan + IS_QuickVol;
}
static void retrigEnvelopeVibrato(stmTyp *ch)
{
if (!(ch->waveCtrl & 0x04)) ch->vibPos = 0;
if (!(ch->waveCtrl & 0x40)) ch->tremPos = 0;
ch->retrigCnt = 0;
ch->tremorPos = 0;
ch->envSustainActive = true;
instrTyp *ins = ch->instrPtr;
assert(ins != NULL);
if (ins->envVTyp & 1)
{
ch->envVCnt = 65535;
ch->envVPos = 0;
}
if (ins->envPTyp & 1)
{
ch->envPCnt = 65535;
ch->envPPos = 0;
}
ch->fadeOutSpeed = ins->fadeOut; // FT2 doesn't check if fadeout is more than 4095
ch->fadeOutAmp = 32768;
if (ins->vibDepth > 0)
{
ch->eVibPos = 0;
if (ins->vibSweep > 0)
{
ch->eVibAmp = 0;
ch->eVibSweep = (ins->vibDepth << 8) / ins->vibSweep;
}
else
{
ch->eVibAmp = ins->vibDepth << 8;
ch->eVibSweep = 0;
}
}
}
void keyOff(stmTyp *ch)
{
ch->envSustainActive = false;
instrTyp *ins = ch->instrPtr;
assert(ins != NULL);
if (!(ins->envPTyp & 1)) // yes, FT2 does this (!). Most likely a bug?
{
if (ch->envPCnt >= (uint16_t)ins->envPP[ch->envPPos][0])
ch->envPCnt = ins->envPP[ch->envPPos][0] - 1;
}
if (ins->envVTyp & 1)
{
if (ch->envVCnt >= (uint16_t)ins->envVP[ch->envVPos][0])
ch->envVCnt = ins->envVP[ch->envVPos][0] - 1;
}
else
{
ch->realVol = 0;
ch->outVol = 0;
ch->status |= IS_Vol + IS_QuickVol;
}
}
void calcReplayerLogTab(void)
{
for (int32_t i = 0; i < 32; i++)
dExp2MulTab[i] = 1.0 / exp2(i); // 1/2^i
for (int32_t i = 0; i < 768; i++)
dLogTab[i] = 8363.0 * 256.0 * exp2(i * (1.0 / 768.0));
}
void calcReplayerVars(int32_t audioFreq)
{
assert(audioFreq > 0);
if (audioFreq <= 0)
return;
audio.dHz2MixDeltaMul = (double)MIXER_FRAC_SCALE / audioFreq;
audio.quickVolRampSamples = (int32_t)((audioFreq / 200.0) + 0.5); // rounded
audio.dRampQuickVolMul = 1.0 / audio.quickVolRampSamples;
audio.dSamplesPerTickTab[0] = 0.0;
audio.tickTimeTab[0] = UINT64_MAX;
audio.dRampTickMulTab[0] = 0.0;
for (int32_t i = MIN_BPM; i <= MAX_BPM; i++)
{
const double dBpmHz = i * (1.0 / 2.5); // i / 2.5
const double dSamplesPerTick = audioFreq / dBpmHz;
audio.dSamplesPerTickTab[i] = dSamplesPerTick;
// BPM Hz -> tick length for performance counter (syncing visuals to audio)
double dTimeInt;
double dTimeFrac = modf(editor.dPerfFreq / dBpmHz, &dTimeInt);
const int32_t timeInt = (int32_t)dTimeInt;
dTimeFrac = floor((UINT32_MAX+1.0) * dTimeFrac); // fractional part (scaled to 0..2^32-1)
audio.tickTimeTab[i] = ((uint64_t)timeInt << 32) | (uint32_t)dTimeFrac;
// for calculating volume ramp length for tick-lenghted ramps
const int32_t samplesPerTick = (int32_t)(dSamplesPerTick + 0.5); // this has to be rounded first
audio.dRampTickMulTab[i] = 1.0 / samplesPerTick;
}
}
int32_t getPianoKey(uint16_t period, int8_t finetune, int8_t relativeNote) // for piano in Instr. Ed.
{
assert(note2Period != NULL);
if (period > note2Period[0])
return -1; // out of lower range on piano
if (audio.linearPeriodsFlag)
{
int32_t note = ((10*12*16*4+64) - (period + 16*2)) >> 2;
note -= ((int8_t)finetune >> 3) + 16;
note = ((note >> 4) + 1) - relativeNote;
return note;
}
/* Amiga periods require a slower method...
** This is not 100% accurate for all periods, but should be faster
** than using log2() and floating-point arithmetics.
*/
finetune = ((int8_t)finetune >> 3) + 16;
int32_t hiPeriod = (10*12*16)+16;
int32_t loPeriod = 0;
for (int32_t i = 0; i < 7; i++)
{
const int32_t tmpPeriod = (((loPeriod + hiPeriod) >> 1) & ~15) + finetune;
int32_t lookUp = tmpPeriod - 8;
if (lookUp < 0)
lookUp = 0;
if (period >= note2Period[lookUp])
hiPeriod = (tmpPeriod - finetune) & ~15;
else
loPeriod = (tmpPeriod - finetune) & ~15;
}
int32_t note = loPeriod;
note >>= 4;
note -= relativeNote;
return note;
}
static void startTone(uint8_t ton, uint8_t effTyp, uint8_t eff, stmTyp *ch)
{
if (ton == 97)
{
keyOff(ch);
return;
}
// if we came from Rxy (retrig), we didn't check note (Ton) yet
if (ton == 0)
{
ton = ch->tonNr;
if (ton == 0)
return; // if still no note, exit from routine
}
ch->tonNr = ton;
assert(ch->instrNr <= 130);
instrTyp *ins = instr[ch->instrNr];
if (ins == NULL)
ins = instr[0]; // empty instruments use this placeholder instrument
ch->instrPtr = ins;
ch->mute = ins->mute;
if (ton > 96) // non-FT2 security (should never happen because I clamp in the patt. loader now)
ton = 96;
const uint8_t smp = ins->ta[ton-1] & 0xF;
ch->sampleNr = smp;
sampleTyp *s = &ins->samp[smp];
ch->smpPtr = s;
ch->relTonNr = s->relTon;
ton += ch->relTonNr;
if (ton >= 10*12)
return;
ch->oldVol = s->vol;
ch->oldPan = s->pan;
if (effTyp == 0x0E && (eff & 0xF0) == 0x50)
ch->fineTune = ((eff & 0x0F) << 4) - 128; // result is now -128..127
else
ch->fineTune = s->fine;
if (ton != 0)
{
const uint16_t tmpTon = ((ton-1) << 4) + (((int8_t)ch->fineTune >> 3) + 16); // 0..1935
if (tmpTon < MAX_NOTES) // tmpTon is *always* below MAX_NOTES here, so this check is not really needed
{
assert(note2Period != NULL);
ch->outPeriod = ch->realPeriod = note2Period[tmpTon];
}
}
ch->status |= IS_Period + IS_Vol + IS_Pan + IS_NyTon + IS_QuickVol;
if (effTyp == 9)
{
if (eff)
ch->smpOffset = ch->eff;
ch->smpStartPos = ch->smpOffset << 8;
}
else
{
ch->smpStartPos = 0;
}
}
static void volume(stmTyp *ch, uint8_t param); // volume slide
static void vibrato2(stmTyp *ch);
static void tonePorta(stmTyp *ch, uint8_t param);
static void dummy(stmTyp *ch, uint8_t param)
{
(void)ch;
(void)param;
return;
}
static void finePortaUp(stmTyp *ch, uint8_t param)
{
if (param == 0)
param = ch->fPortaUpSpeed;
ch->fPortaUpSpeed = param;
ch->realPeriod -= param << 2;
if ((int16_t)ch->realPeriod < 1)
ch->realPeriod = 1;
ch->outPeriod = ch->realPeriod;
ch->status |= IS_Period;
}
static void finePortaDown(stmTyp *ch, uint8_t param)
{
if (param == 0)
param = ch->fPortaDownSpeed;
ch->fPortaDownSpeed = param;
ch->realPeriod += param << 2;
if ((int16_t)ch->realPeriod > MAX_FRQ-1) // FT2 bug, should've been unsigned comparison
ch->realPeriod = MAX_FRQ-1;
ch->outPeriod = ch->realPeriod;
ch->status |= IS_Period;
}
static void setGlissCtrl(stmTyp *ch, uint8_t param)
{
ch->glissFunk = param;
}
static void setVibratoCtrl(stmTyp *ch, uint8_t param)
{
ch->waveCtrl = (ch->waveCtrl & 0xF0) | param;
}
static void jumpLoop(stmTyp *ch, uint8_t param)
{
if (param == 0)
{
ch->pattPos = song.pattPos & 0xFF;
}
else if (ch->loopCnt == 0)
{
ch->loopCnt = param;
song.pBreakPos = ch->pattPos;
song.pBreakFlag = true;
}
else if (--ch->loopCnt > 0)
{
song.pBreakPos = ch->pattPos;
song.pBreakFlag = true;
}
}
static void setTremoloCtrl(stmTyp *ch, uint8_t param)
{
ch->waveCtrl = (param << 4) | (ch->waveCtrl & 0x0F);
}
static void volFineUp(stmTyp *ch, uint8_t param)
{
if (param == 0)
param = ch->fVolSlideUpSpeed;
ch->fVolSlideUpSpeed = param;
ch->realVol += param;
if (ch->realVol > 64)
ch->realVol = 64;
ch->outVol = ch->realVol;
ch->status |= IS_Vol;
}
static void volFineDown(stmTyp *ch, uint8_t param)
{
if (param == 0)
param = ch->fVolSlideDownSpeed;
ch->fVolSlideDownSpeed = param;
ch->realVol -= param;
if ((int8_t)ch->realVol < 0)
ch->realVol = 0;
ch->outVol = ch->realVol;
ch->status |= IS_Vol;
}
static void noteCut0(stmTyp *ch, uint8_t param)
{
if (param == 0) // only a parameter of zero is handled here
{
ch->realVol = 0;
ch->outVol = 0;
ch->status |= IS_Vol + IS_QuickVol;
}
}
static void pattDelay(stmTyp *ch, uint8_t param)
{
if (song.pattDelTime2 == 0)
song.pattDelTime = param + 1;
(void)ch;
}
static const efxRoutine EJumpTab_TickZero[16] =
{
dummy, // 0
finePortaUp, // 1
finePortaDown, // 2
setGlissCtrl, // 3
setVibratoCtrl, // 4
dummy, // 5
jumpLoop, // 6
setTremoloCtrl, // 7
dummy, // 8
dummy, // 9
volFineUp, // A
volFineDown, // B
noteCut0, // C
dummy, // D
pattDelay, // E
dummy // F
};
static void E_Effects_TickZero(stmTyp *ch, uint8_t param)
{
const uint8_t efx = param >> 4;
param &= 0x0F;
if (ch->stOff) // channel is muted, only handle some E effects
{
if (efx == 0x6) jumpLoop(ch, param);
else if (efx == 0xE) pattDelay(ch, param);
return;
}
EJumpTab_TickZero[efx](ch, param);
}
static void posJump(stmTyp *ch, uint8_t param)
{
if (playMode != PLAYMODE_PATT && playMode != PLAYMODE_RECPATT)
{
const int16_t pos = (int16_t)param - 1;
if (pos < 0 || pos >= song.len)
bxxOverflow = true; // non-FT2 security fix...
else
song.songPos = pos;
}
song.pBreakPos = 0;
song.posJumpFlag = true;
(void)ch;
}
static void pattBreak(stmTyp *ch, uint8_t param)
{
song.posJumpFlag = true;
param = ((param >> 4) * 10) + (param & 0x0F);
if (param <= 63)
song.pBreakPos = param;
else
song.pBreakPos = 0;
(void)ch;
}
static void setSpeed(stmTyp *ch, uint8_t param)
{
if (param >= 32)
{
song.speed = param;
P_SetSpeed(song.speed);
}
else
{
song.timer = song.tempo = param;
}
(void)ch;
}
static void setGlobaVol(stmTyp *ch, uint8_t param)
{
if (param > 64)
param = 64;
song.globVol = param;
stmTyp *c = stm;
for (int32_t i = 0; i < song.antChn; i++, c++) // update all voice volumes
c->status |= IS_Vol;
(void)ch;
}
static void setEnvelopePos(stmTyp *ch, uint8_t param)
{
bool envUpdate;
int8_t point;
int16_t tick;
instrTyp *ins = ch->instrPtr;
assert(ins != NULL);
// *** VOLUME ENVELOPE ***
if (ins->envVTyp & 1)
{
ch->envVCnt = param-1;
point = 0;
envUpdate = true;
tick = param;
if (ins->envVPAnt > 1)
{
point++;
for (int32_t i = 0; i < ins->envVPAnt-1; i++)
{
if (tick < ins->envVP[point][0])
{
point--;
tick -= ins->envVP[point][0];
if (tick == 0)
{
envUpdate = false;
break;
}
if (ins->envVP[point+1][0] <= ins->envVP[point][0])
{
envUpdate = true;
break;
}
ch->envVIPValue = ((ins->envVP[point+1][1] - ins->envVP[point][1]) << 16) / (ins->envVP[point+1][0] - ins->envVP[point][0]);
ch->envVAmp = (ch->envVIPValue * (tick-1)) + (ins->envVP[point][1] << 16);
point++;
envUpdate = false;
break;
}
point++;
}
if (envUpdate)
point--;
}
if (envUpdate)
{
ch->envVIPValue = 0;
ch->envVAmp = ins->envVP[point][1];
}
if (point >= ins->envVPAnt)
{
point = ins->envVPAnt-1;
if (point < 0)
point = 0;
}
ch->envVPos = point;
}
// *** PANNING ENVELOPE ***
if (ins->envVTyp & 2) // probably an FT2 bug
{
ch->envPCnt = param-1;
point = 0;
envUpdate = true;
tick = param;
if (ins->envPPAnt > 1)
{
point++;
for (int32_t i = 0; i < ins->envPPAnt-1; i++)
{
if (tick < ins->envPP[point][0])
{
point--;
tick -= ins->envPP[point][0];
if (tick == 0)
{
envUpdate = false;
break;
}
if (ins->envPP[point+1][0] <= ins->envPP[point][0])
{
envUpdate = true;
break;
}
ch->envPIPValue = ((ins->envPP[point+1][1] - ins->envPP[point][1]) << 16) / (ins->envPP[point+1][0] - ins->envPP[point][0]);
ch->envPAmp = (ch->envPIPValue * (tick-1)) + (ins->envPP[point][1] << 16);
point++;
envUpdate = false;
break;
}
point++;
}
if (envUpdate)
point--;
}
if (envUpdate)
{
ch->envPIPValue = 0;
ch->envPAmp = ins->envPP[point][1];
}
if (point >= ins->envPPAnt)
{
point = ins->envPPAnt-1;
if (point < 0)
point = 0;
}
ch->envPPos = point;
}
}
static const efxRoutine JumpTab_TickZero[36] =
{
dummy, // 0
dummy, // 1
dummy, // 2
dummy, // 3
dummy, // 4
dummy, // 5
dummy, // 6
dummy, // 7
dummy, // 8
dummy, // 9
dummy, // A
posJump, // B
dummy, // C
pattBreak, // D
E_Effects_TickZero, // E
setSpeed, // F
setGlobaVol, // G
dummy, // H
dummy, // I
dummy, // J
dummy, // K
setEnvelopePos, // L
dummy, // M
dummy, // N
dummy, // O
dummy, // P
dummy, // Q
dummy, // R
dummy, // S
dummy, // T
dummy, // U
dummy, // V
dummy, // W
dummy, // X
dummy, // Y
dummy // Z
};
static void handleMoreEffects_TickZero(stmTyp *ch) // called even if channel is muted
{
if (ch->effTyp > 35)
return;
JumpTab_TickZero[ch->effTyp](ch, ch->eff);
}
/* -- tick-zero volume column effects --
** 2nd parameter is used for a volume column quirk with the Rxy command (multiretrig)
*/
static void v_SetVibSpeed(stmTyp *ch, uint8_t *volKol)
{
*volKol = (ch->volKolVol & 0x0F) << 2;
if (*volKol != 0)
ch->vibSpeed = *volKol;
}
static void v_Volume(stmTyp *ch, uint8_t *volKol)
{
*volKol -= 16;
if (*volKol > 64) // no idea why FT2 has this check...
*volKol = 64;
ch->outVol = ch->realVol = *volKol;
ch->status |= IS_Vol + IS_QuickVol;
}
static void v_FineSlideDown(stmTyp *ch, uint8_t *volKol)
{
*volKol = (uint8_t)(0 - (ch->volKolVol & 0x0F)) + ch->realVol;
if ((int8_t)*volKol < 0)
*volKol = 0;
ch->outVol = ch->realVol = *volKol;
ch->status |= IS_Vol;
}
static void v_FineSlideUp(stmTyp *ch, uint8_t *volKol)
{
*volKol = (ch->volKolVol & 0x0F) + ch->realVol;
if (*volKol > 64)
*volKol = 64;
ch->outVol = ch->realVol = *volKol;
ch->status |= IS_Vol;
}
static void v_SetPan(stmTyp *ch, uint8_t *volKol)
{
*volKol <<= 4;
ch->outPan = *volKol;
ch->status |= IS_Pan;
}
// -- non-tick-zero volume column effects --
static void v_SlideDown(stmTyp *ch)
{
uint8_t newVol = (uint8_t)(0 - (ch->volKolVol & 0x0F)) + ch->realVol;
if ((int8_t)newVol < 0)
newVol = 0;
ch->outVol = ch->realVol = newVol;
ch->status |= IS_Vol;
}
static void v_SlideUp(stmTyp *ch)
{
uint8_t newVol = (ch->volKolVol & 0x0F) + ch->realVol;
if (newVol > 64)
newVol = 64;
ch->outVol = ch->realVol = newVol;
ch->status |= IS_Vol;
}
static void v_Vibrato(stmTyp *ch)
{
const uint8_t param = ch->volKolVol & 0xF;
if (param > 0)
ch->vibDepth = param;
vibrato2(ch);
}
static void v_PanSlideLeft(stmTyp *ch)
{
uint16_t tmp16 = (uint8_t)(0 - (ch->volKolVol & 0x0F)) + ch->outPan;
if (tmp16 < 256) // includes an FT2 bug: pan-slide-left of 0 = set pan to 0
tmp16 = 0;
ch->outPan = (uint8_t)tmp16;
ch->status |= IS_Pan;
}
static void v_PanSlideRight(stmTyp *ch)
{
uint16_t tmp16 = (ch->volKolVol & 0x0F) + ch->outPan;
if (tmp16 > 255)
tmp16 = 255;
ch->outPan = (uint8_t)tmp16;
ch->status |= IS_Pan;
}
static void v_TonePorta(stmTyp *ch)
{
tonePorta(ch, 0); // the last parameter is actually not used in tonePorta()
}
static void v_dummy(stmTyp *ch)
{
(void)ch;
return;
}
static void v_dummy2(stmTyp *ch, uint8_t *volKol)
{
(void)ch;
(void)volKol;
return;
}
static const volKolEfxRoutine VJumpTab_TickNonZero[16] =
{
v_dummy, v_dummy, v_dummy, v_dummy,
v_dummy, v_dummy, v_SlideDown, v_SlideUp,
v_dummy, v_dummy, v_dummy, v_Vibrato,
v_dummy, v_PanSlideLeft, v_PanSlideRight, v_TonePorta
};
static const volKolEfxRoutine2 VJumpTab_TickZero[16] =
{
v_dummy2, v_Volume, v_Volume, v_Volume,
v_Volume, v_Volume, v_dummy2, v_dummy2,
v_FineSlideDown, v_FineSlideUp, v_SetVibSpeed, v_dummy2,
v_SetPan, v_dummy2, v_dummy2, v_dummy2
};
static void setPan(stmTyp *ch, uint8_t param)
{
ch->outPan = param;
ch->status |= IS_Pan;
}
static void setVol(stmTyp *ch, uint8_t param)
{
if (param > 64)
param = 64;
ch->outVol = ch->realVol = param;
ch->status |= IS_Vol + IS_QuickVol;
}
static void xFinePorta(stmTyp *ch, uint8_t param)
{
const uint8_t type = param >> 4;
param &= 0x0F;
if (type == 0x1) // extra fine porta up
{
if (param == 0)
param = ch->ePortaUpSpeed;
ch->ePortaUpSpeed = param;
uint16_t newPeriod = ch->realPeriod;
newPeriod -= param;
if ((int16_t)newPeriod < 1)
newPeriod = 1;
ch->outPeriod = ch->realPeriod = newPeriod;
ch->status |= IS_Period;
}
else if (type == 0x2) // extra fine porta down
{
if (param == 0)
param = ch->ePortaDownSpeed;
ch->ePortaDownSpeed = param;
uint16_t newPeriod = ch->realPeriod;
newPeriod += param;
if ((int16_t)newPeriod > MAX_FRQ-1) // FT2 bug, should've been unsigned comparison
newPeriod = MAX_FRQ-1;
ch->outPeriod = ch->realPeriod = newPeriod;
ch->status |= IS_Period;
}
}
static void doMultiRetrig(stmTyp *ch, uint8_t param) // "param" is never used (needed for efx jumptable structure)
{
uint8_t cnt = ch->retrigCnt + 1;
if (cnt < ch->retrigSpeed)
{
ch->retrigCnt = cnt;
return;
}
ch->retrigCnt = 0;
int16_t vol = ch->realVol;
switch (ch->retrigVol)
{
case 0x1: vol -= 1; break;
case 0x2: vol -= 2; break;
case 0x3: vol -= 4; break;
case 0x4: vol -= 8; break;
case 0x5: vol -= 16; break;
case 0x6: vol = (vol >> 1) + (vol >> 3) + (vol >> 4); break;
case 0x7: vol >>= 1; break;
case 0x8: break; // does not change the volume
case 0x9: vol += 1; break;
case 0xA: vol += 2; break;
case 0xB: vol += 4; break;
case 0xC: vol += 8; break;
case 0xD: vol += 16; break;
case 0xE: vol = (vol >> 1) + vol; break;
case 0xF: vol += vol; break;
default: break;
}
vol = CLAMP(vol, 0, 64);
ch->realVol = (uint8_t)vol;
ch->outVol = ch->realVol;
if (ch->volKolVol >= 0x10 && ch->volKolVol <= 0x50)
{
ch->outVol = ch->volKolVol - 0x10;
ch->realVol = ch->outVol;
}
else if (ch->volKolVol >= 0xC0 && ch->volKolVol <= 0xCF)
{
ch->outPan = (ch->volKolVol & 0x0F) << 4;
}
startTone(0, 0, 0, ch);
(void)param;
}
static void multiRetrig(stmTyp *ch, uint8_t param, uint8_t volumeColumnData)
{
uint8_t tmpParam;
tmpParam = param & 0x0F;
if (tmpParam == 0)
tmpParam = ch->retrigSpeed;
ch->retrigSpeed = tmpParam;
tmpParam = param >> 4;
if (tmpParam == 0)
tmpParam = ch->retrigVol;
ch->retrigVol = tmpParam;
if (volumeColumnData == 0)
doMultiRetrig(ch, 0); // the second parameter is never used (needed for efx jumptable structure)
}
static void handleEffects_TickZero(stmTyp *ch)
{
// volume column effects
uint8_t newVolKol = ch->volKolVol; // manipulated by vol. column effects, then used for multiretrig check (FT2 quirk)
VJumpTab_TickZero[ch->volKolVol >> 4](ch, &newVolKol);
// normal effects
const uint8_t param = ch->eff;
if (ch->effTyp == 0 && param == 0)
return; // no effect
if (ch->effTyp == 8) setPan(ch, param);
else if (ch->effTyp == 12) setVol(ch, param);
else if (ch->effTyp == 27) multiRetrig(ch, param, newVolKol);
else if (ch->effTyp == 33) xFinePorta(ch, param);
handleMoreEffects_TickZero(ch);
}
static void fixTonePorta(stmTyp *ch, const tonTyp *p, uint8_t inst)
{
if (p->ton > 0)
{
if (p->ton == 97)
{
keyOff(ch);
}
else
{
const uint16_t note = (((p->ton-1) + ch->relTonNr) << 4) + (((int8_t)ch->fineTune >> 3) + 16);
if (note < MAX_NOTES)
{
assert(note2Period != NULL);
ch->wantPeriod = note2Period[note];
if (ch->wantPeriod == ch->realPeriod)
ch->portaDir = 0;
else if (ch->wantPeriod > ch->realPeriod)
ch->portaDir = 1;
else
ch->portaDir = 2;
}
}
}
if (inst > 0)
{
retrigVolume(ch);
if (p->ton != 97)
retrigEnvelopeVibrato(ch);
}
}
static void getNewNote(stmTyp *ch, const tonTyp *p)
{
ch->volKolVol = p->vol;
if (ch->effTyp == 0)
{
if (ch->eff > 0) // we have an arpeggio running, set period back
{
ch->outPeriod = ch->realPeriod;
ch->status |= IS_Period;
}
}
else
{
// if we have a vibrato on previous row (ch) that ends at current row (p), set period back
if ((ch->effTyp == 4 || ch->effTyp == 6) && (p->effTyp != 4 && p->effTyp != 6))
{
ch->outPeriod = ch->realPeriod;
ch->status |= IS_Period;
}
}
ch->effTyp = p->effTyp;
ch->eff = p->eff;
ch->tonTyp = (p->instr << 8) | p->ton;
if (ch->stOff) // channel is muted, only handle some effects
{
handleMoreEffects_TickZero(ch);
return;
}
// 'inst' var is used for later if checks...
uint8_t inst = p->instr;
if (inst > 0)
{
if (inst <= MAX_INST)
ch->instrNr = inst;
else
inst = 0;
}
bool checkEfx = true;
if (p->effTyp == 0x0E)
{
if (p->eff >= 0xD1 && p->eff <= 0xDF)
return; // we have a note delay (ED1..EDF)
else if (p->eff == 0x90)
checkEfx = false;
}
if (checkEfx)
{
if ((ch->volKolVol & 0xF0) == 0xF0) // gxx
{
const uint8_t volKolParam = ch->volKolVol & 0x0F;
if (volKolParam > 0)
ch->portaSpeed = volKolParam << 6;
fixTonePorta(ch, p, inst);
handleEffects_TickZero(ch);
return;
}
if (p->effTyp == 3 || p->effTyp == 5) // 3xx or 5xx
{
if (p->effTyp != 5 && p->eff != 0)
ch->portaSpeed = p->eff << 2;
fixTonePorta(ch, p, inst);
handleEffects_TickZero(ch);
return;
}
if (p->effTyp == 0x14 && p->eff == 0) // K00 (KeyOff - only handle tick 0 here)
{
keyOff(ch);
if (inst)
retrigVolume(ch);
handleEffects_TickZero(ch);
return;
}
if (p->ton == 0)
{
if (inst > 0)
{
retrigVolume(ch);
retrigEnvelopeVibrato(ch);
}
handleEffects_TickZero(ch);
return;
}
}
if (p->ton == 97)
keyOff(ch);
else
startTone(p->ton, p->effTyp, p->eff, ch);
if (inst > 0)
{
retrigVolume(ch);
if (p->ton != 97)
retrigEnvelopeVibrato(ch);
}
handleEffects_TickZero(ch);
}
static void fixaEnvelopeVibrato(stmTyp *ch)
{
bool envInterpolateFlag, envDidInterpolate;
uint8_t envPos;
int16_t autoVibVal;
uint16_t autoVibAmp;
int32_t envVal;
double dVol;
instrTyp *ins = ch->instrPtr;
assert(ins != NULL);
// *** FADEOUT ***
if (!ch->envSustainActive)
{
ch->status |= IS_Vol;
// unsigned clamp + reset
if (ch->fadeOutAmp >= ch->fadeOutSpeed)
{
ch->fadeOutAmp -= ch->fadeOutSpeed;
}
else
{
ch->fadeOutAmp = 0;
ch->fadeOutSpeed = 0;
}
}
if (!ch->mute)
{
// *** VOLUME ENVELOPE ***
envVal = 0;
if (ins->envVTyp & 1)
{
envDidInterpolate = false;
envPos = ch->envVPos;
if (++ch->envVCnt == ins->envVP[envPos][0])
{
ch->envVAmp = ins->envVP[envPos][1] << 16;
envPos++;
if (ins->envVTyp & 4)
{
envPos--;
if (envPos == ins->envVRepE)
{
if (!(ins->envVTyp & 2) || envPos != ins->envVSust || ch->envSustainActive)
{
envPos = ins->envVRepS;
ch->envVCnt = ins->envVP[envPos][0];
ch->envVAmp = ins->envVP[envPos][1] << 16;
}
}
envPos++;
}
if (envPos < ins->envVPAnt)
{
envInterpolateFlag = true;
if ((ins->envVTyp & 2) && ch->envSustainActive)
{
if (envPos-1 == ins->envVSust)
{
envPos--;
ch->envVIPValue = 0;
envInterpolateFlag = false;
}
}
if (envInterpolateFlag)
{
ch->envVPos = envPos;
ch->envVIPValue = 0;
if (ins->envVP[envPos][0] > ins->envVP[envPos-1][0])
{
ch->envVIPValue = ((ins->envVP[envPos][1] - ins->envVP[envPos-1][1]) << 16) / (ins->envVP[envPos][0] - ins->envVP[envPos-1][0]);
envVal = ch->envVAmp;
envDidInterpolate = true;
}
}
}
else
{
ch->envVIPValue = 0;
}
}
if (!envDidInterpolate)
{
ch->envVAmp += ch->envVIPValue;
envVal = ch->envVAmp;
if (envVal > 64<<16)
{
if (envVal > 128<<16)
envVal = 64<<16;
else
envVal = 0;
ch->envVIPValue = 0;
}
}
const int32_t vol = song.globVol * ch->outVol * ch->fadeOutAmp;
dVol = vol * (1.0 / (64.0 * 64.0 * 32768.0));
dVol *= (int32_t)envVal * (1.0 / (64.0 * (1 << 16)));
ch->status |= IS_Vol; // update vol every tick because vol envelope is enabled
}
else
{
const int32_t vol = song.globVol * ch->outVol * ch->fadeOutAmp;
dVol = vol * (1.0 / (64.0 * 64.0 * 32768.0));
}
if (dVol > 1.0) // shouldn't happen, but just in case...
dVol = 1.0;
ch->dFinalVol = dVol;
ch->finalVol = (uint8_t)(int32_t)((ch->dFinalVol * 255) + 0.5); // 0.0 .. 1.0 -> 0..255 rounded, used for visuals
}
else
{
ch->dFinalVol = 0.0;
ch->finalVol = 0;
}
// *** PANNING ENVELOPE ***
envVal = 0;
if (ins->envPTyp & 1)
{
envDidInterpolate = false;
envPos = ch->envPPos;
if (++ch->envPCnt == ins->envPP[envPos][0])
{
ch->envPAmp = ins->envPP[envPos][1] << 16;
envPos++;
if (ins->envPTyp & 4)
{
envPos--;
if (envPos == ins->envPRepE)
{
if (!(ins->envPTyp & 2) || envPos != ins->envPSust || ch->envSustainActive)
{
envPos = ins->envPRepS;
ch->envPCnt = ins->envPP[envPos][0];
ch->envPAmp = ins->envPP[envPos][1] << 16;
}
}
envPos++;
}
if (envPos < ins->envPPAnt)
{
envInterpolateFlag = true;
if ((ins->envPTyp & 2) && ch->envSustainActive)
{
if (envPos-1 == ins->envPSust)
{
envPos--;
ch->envPIPValue = 0;
envInterpolateFlag = false;
}
}
if (envInterpolateFlag)
{
ch->envPPos = envPos;
ch->envPIPValue = 0;
if (ins->envPP[envPos][0] > ins->envPP[envPos-1][0])
{
ch->envPIPValue = ((ins->envPP[envPos][1] - ins->envPP[envPos-1][1]) << 16) / (ins->envPP[envPos][0] - ins->envPP[envPos-1][0]);
envVal = ch->envPAmp;
envDidInterpolate = true;
}
}
}
else
{
ch->envPIPValue = 0;
}
}
if (!envDidInterpolate)
{
ch->envPAmp += ch->envPIPValue;
envVal = ch->envPAmp;
if (envVal > 64<<16)
{
if (envVal > 128<<16)
envVal = 64<<16;
else
envVal = 0;
ch->envPIPValue = 0;
}
}
envVal -= 32<<16; // center panning envelope value
const int32_t pan = 128 - ABS(ch->outPan-128);
const int32_t panAdd = (pan * envVal) >> (16+5);
ch->finalPan = (uint8_t)CLAMP(ch->outPan + panAdd, 0, 255);
ch->status |= IS_Pan; // update pan every tick because pan envelope is enabled
}
else
{
ch->finalPan = ch->outPan;
}
// *** AUTO VIBRATO ***
#ifdef HAS_MIDI
if (ch->midiVibDepth > 0 || ins->vibDepth > 0)
#else
if (ins->vibDepth > 0)
#endif
{
if (ch->eVibSweep > 0)
{
autoVibAmp = ch->eVibSweep;
if (ch->envSustainActive)
{
autoVibAmp += ch->eVibAmp;
if ((autoVibAmp >> 8) > ins->vibDepth)
{
autoVibAmp = ins->vibDepth << 8;
ch->eVibSweep = 0;
}
ch->eVibAmp = autoVibAmp;
}
}
else
{
autoVibAmp = ch->eVibAmp;
}
#ifdef HAS_MIDI
// non-FT2 hack to make modulation wheel work when auto vibrato rate is zero
if (ch->midiVibDepth > 0 && ins->vibRate == 0)
ins->vibRate = 0x20;
autoVibAmp += ch->midiVibDepth;
#endif
ch->eVibPos += ins->vibRate;
if (ins->vibTyp == 1) autoVibVal = (ch->eVibPos > 127) ? 64 : -64; // square
else if (ins->vibTyp == 2) autoVibVal = (((ch->eVibPos >> 1) + 64) & 127) - 64; // ramp up
else if (ins->vibTyp == 3) autoVibVal = ((-(ch->eVibPos >> 1) + 64) & 127) - 64; // ramp down
else autoVibVal = vibSineTab[ch->eVibPos]; // sine
autoVibVal <<= 2;
uint16_t tmpPeriod = (autoVibVal * (int16_t)autoVibAmp) >> 16;
tmpPeriod += ch->outPeriod;
if (tmpPeriod > MAX_FRQ-1)
tmpPeriod = 0; // yes, FT2 does this (!)
#ifdef HAS_MIDI
if (midi.enable)
tmpPeriod -= ch->midiPitch;
#endif
ch->finalPeriod = tmpPeriod;
ch->status |= IS_Period;
}
else
{
ch->finalPeriod = ch->outPeriod;
#ifdef HAS_MIDI
if (midi.enable)
{
ch->finalPeriod -= ch->midiPitch;
ch->status |= IS_Period;
}
#endif
}
}
// for arpeggio and portamento (semitone-slide mode)
static uint16_t relocateTon(uint16_t period, uint8_t arpNote, stmTyp *ch)
{
int32_t tmpPeriod;
const int32_t fineTune = ((int8_t)ch->fineTune >> 3) + 16;
/* FT2 bug, should've been 10*12*16. Notes above B-7 (95) will have issues.
** You can only achieve such high notes by having a high relative note setting.
*/
int32_t hiPeriod = 8*12*16;
int32_t loPeriod = 0;
for (int32_t i = 0; i < 8; i++)
{
tmpPeriod = (((loPeriod + hiPeriod) >> 1) & ~15) + fineTune;
int32_t lookUp = tmpPeriod - 8;
if (lookUp < 0)
lookUp = 0; // safety fix (C-0 w/ finetune <= -65). This buggy read seems to return 0 in FT2 (TODO: Verify...)
if (period >= note2Period[lookUp])
hiPeriod = (tmpPeriod - fineTune) & ~15;
else
loPeriod = (tmpPeriod - fineTune) & ~15;
}
tmpPeriod = loPeriod + fineTune + (arpNote << 4);
if (tmpPeriod >= (8*12*16+15)-1) // FT2 bug, should've been 10*12*16+16 (also notice the +2 difference)
tmpPeriod = (8*12*16+16)-1;
return note2Period[tmpPeriod];
}
static void vibrato2(stmTyp *ch)
{
uint8_t tmpVib = (ch->vibPos >> 2) & 0x1F;
switch (ch->waveCtrl & 3)
{
// 0: sine
case 0: tmpVib = vibTab[tmpVib]; break;
// 1: ramp
case 1:
{
tmpVib <<= 3;
if ((int8_t)ch->vibPos < 0)
tmpVib = ~tmpVib;
}
break;
// 2/3: square
default: tmpVib = 255; break;
}
tmpVib = (tmpVib * ch->vibDepth) >> 5; // logical shift (unsigned calc.), not arithmetic shift
if ((int8_t)ch->vibPos < 0)
ch->outPeriod = ch->realPeriod - tmpVib;
else
ch->outPeriod = ch->realPeriod + tmpVib;
ch->status |= IS_Period;
ch->vibPos += ch->vibSpeed;
}
static void arp(stmTyp *ch, uint8_t param)
{
uint8_t note;
const uint8_t tick = arpTab[song.timer & 0xFF]; // non-FT2 protection (we have 248 extra overflow bytes in LUT, but not more!)
if (tick == 0)
{
ch->outPeriod = ch->realPeriod;
}
else
{
if (tick == 1)
note = param >> 4;
else
note = param & 0x0F; // tick 2
ch->outPeriod = relocateTon(ch->realPeriod, note, ch);
}
ch->status |= IS_Period;
}
static void portaUp(stmTyp *ch, uint8_t param)
{
if (param == 0)
param = ch->portaUpSpeed;
ch->portaUpSpeed = param;
ch->realPeriod -= param << 2;
if ((int16_t)ch->realPeriod < 1)
ch->realPeriod = 1;
ch->outPeriod = ch->realPeriod;
ch->status |= IS_Period;
}
static void portaDown(stmTyp *ch, uint8_t param)
{
if (param == 0)
param = ch->portaDownSpeed;
ch->portaDownSpeed = param;
ch->realPeriod += param << 2;
if ((int16_t)ch->realPeriod > MAX_FRQ-1) // FT2 bug, should've been unsigned comparison
ch->realPeriod = MAX_FRQ-1;
ch->outPeriod = ch->realPeriod;
ch->status |= IS_Period;
}
static void tonePorta(stmTyp *ch, uint8_t param)
{
if (ch->portaDir == 0)
return;
if (ch->portaDir > 1)
{
ch->realPeriod -= ch->portaSpeed;
if ((int16_t)ch->realPeriod <= (int16_t)ch->wantPeriod)
{
ch->portaDir = 1;
ch->realPeriod = ch->wantPeriod;
}
}
else
{
ch->realPeriod += ch->portaSpeed;
if (ch->realPeriod >= ch->wantPeriod)
{
ch->portaDir = 1;
ch->realPeriod = ch->wantPeriod;
}
}
if (ch->glissFunk) // semitone-slide flag
ch->outPeriod = relocateTon(ch->realPeriod, 0, ch);
else
ch->outPeriod = ch->realPeriod;
ch->status |= IS_Period;
(void)param;
}
static void vibrato(stmTyp *ch, uint8_t param)
{
uint8_t tmp8;
if (ch->eff > 0)
{
tmp8 = param & 0x0F;
if (tmp8 > 0)
ch->vibDepth = tmp8;
tmp8 = (param & 0xF0) >> 2;
if (tmp8 > 0)
ch->vibSpeed = tmp8;
}
vibrato2(ch);
}
static void tonePlusVol(stmTyp *ch, uint8_t param)
{
tonePorta(ch, 0); // the last parameter is actually not used in tonePorta()
volume(ch, param);
(void)param;
}
static void vibratoPlusVol(stmTyp *ch, uint8_t param)
{
vibrato2(ch);
volume(ch, param);
(void)param;
}
static void tremolo(stmTyp *ch, uint8_t param)
{
uint8_t tmp8;
int16_t tremVol;
const uint8_t tmpEff = param;
if (tmpEff > 0)
{
tmp8 = tmpEff & 0x0F;
if (tmp8 > 0)
ch->tremDepth = tmp8;
tmp8 = (tmpEff & 0xF0) >> 2;
if (tmp8 > 0)
ch->tremSpeed = tmp8;
}
uint8_t tmpTrem = (ch->tremPos >> 2) & 0x1F;
switch ((ch->waveCtrl >> 4) & 3)
{
// 0: sine
case 0: tmpTrem = vibTab[tmpTrem]; break;
// 1: ramp
case 1:
{
tmpTrem <<= 3;
if ((int8_t)ch->vibPos < 0) // FT2 bug, should've been ch->tremPos
tmpTrem = ~tmpTrem;
}
break;
// 2/3: square
default: tmpTrem = 255; break;
}
tmpTrem = (tmpTrem * ch->tremDepth) >> 6; // logical shift (unsigned calc.), not arithmetic shift
if ((int8_t)ch->tremPos < 0)
{
tremVol = ch->realVol - tmpTrem;
if (tremVol < 0)
tremVol = 0;
}
else
{
tremVol = ch->realVol + tmpTrem;
if (tremVol > 64)
tremVol = 64;
}
ch->outVol = (uint8_t)tremVol;
ch->status |= IS_Vol;
ch->tremPos += ch->tremSpeed;
}
static void volume(stmTyp *ch, uint8_t param) // volume slide
{
if (param == 0)
param = ch->volSlideSpeed;
ch->volSlideSpeed = param;
uint8_t newVol = ch->realVol;
if ((param & 0xF0) == 0)
{
newVol -= param;
if ((int8_t)newVol < 0)
newVol = 0;
}
else
{
param >>= 4;
newVol += param;
if (newVol > 64)
newVol = 64;
}
ch->outVol = ch->realVol = newVol;
ch->status |= IS_Vol;
}
static void globalVolSlide(stmTyp *ch, uint8_t param)
{
if (param == 0)
param = ch->globVolSlideSpeed;
ch->globVolSlideSpeed = param;
uint8_t newVol = (uint8_t)song.globVol;
if ((param & 0xF0) == 0)
{
newVol -= param;
if ((int8_t)newVol < 0)
newVol = 0;
}
else
{
param >>= 4;
newVol += param;
if (newVol > 64)
newVol = 64;
}
song.globVol = newVol;
stmTyp *c = stm;
for (int32_t i = 0; i < song.antChn; i++, c++) // update all voice volumes
c->status |= IS_Vol;
}
static void keyOffCmd(stmTyp *ch, uint8_t param)
{
if ((uint8_t)(song.tempo-song.timer) == (param & 31))
keyOff(ch);
}
static void panningSlide(stmTyp *ch, uint8_t param)
{
if (param == 0)
param = ch->panningSlideSpeed;
ch->panningSlideSpeed = param;
int16_t newPan = (int16_t)ch->outPan;
if ((param & 0xF0) == 0)
{
newPan -= param;
if (newPan < 0)
newPan = 0;
}
else
{
param >>= 4;
newPan += param;
if (newPan > 255)
newPan = 255;
}
ch->outPan = (uint8_t)newPan;
ch->status |= IS_Pan;
}
static void tremor(stmTyp *ch, uint8_t param)
{
if (param == 0)
param = ch->tremorSave;
ch->tremorSave = param;
uint8_t tremorSign = ch->tremorPos & 0x80;
uint8_t tremorData = ch->tremorPos & 0x7F;
tremorData--;
if ((int8_t)tremorData < 0)
{
if (tremorSign == 0x80)
{
tremorSign = 0x00;
tremorData = param & 0x0F;
}
else
{
tremorSign = 0x80;
tremorData = param >> 4;
}
}
ch->tremorPos = tremorSign | tremorData;
ch->outVol = (tremorSign == 0x80) ? ch->realVol : 0;
ch->status |= IS_Vol + IS_QuickVol;
}
static void retrigNote(stmTyp *ch, uint8_t param)
{
if (param == 0) // E9x with a param of zero is handled in getNewNote()
return;
if ((song.tempo-song.timer) % param == 0)
{
startTone(0, 0, 0, ch);
retrigEnvelopeVibrato(ch);
}
}
static void noteCut(stmTyp *ch, uint8_t param)
{
if ((uint8_t)(song.tempo-song.timer) == param)
{
ch->outVol = ch->realVol = 0;
ch->status |= IS_Vol + IS_QuickVol;
}
}
static void noteDelay(stmTyp *ch, uint8_t param)
{
if ((uint8_t)(song.tempo-song.timer) == param)
{
startTone(ch->tonTyp & 0xFF, 0, 0, ch);
if ((ch->tonTyp & 0xFF00) > 0)
retrigVolume(ch);
retrigEnvelopeVibrato(ch);
if (ch->volKolVol >= 0x10 && ch->volKolVol <= 0x50)
{
ch->outVol = ch->volKolVol - 16;
ch->realVol = ch->outVol;
}
else if (ch->volKolVol >= 0xC0 && ch->volKolVol <= 0xCF)
{
ch->outPan = (ch->volKolVol & 0x0F) << 4;
}
}
}
static const efxRoutine EJumpTab_TickNonZero[16] =
{
dummy, // 0
dummy, // 1
dummy, // 2
dummy, // 3
dummy, // 4
dummy, // 5
dummy, // 6
dummy, // 7
dummy, // 8
retrigNote, // 9
dummy, // A
dummy, // B
noteCut, // C
noteDelay, // D
dummy, // E
dummy // F
};
static void E_Effects_TickNonZero(stmTyp *ch, uint8_t param)
{
EJumpTab_TickNonZero[param >> 4](ch, param & 0xF);
}
static const efxRoutine JumpTab_TickNonZero[36] =
{
arp, // 0
portaUp, // 1
portaDown, // 2
tonePorta, // 3
vibrato, // 4
tonePlusVol, // 5
vibratoPlusVol, // 6
tremolo, // 7
dummy, // 8
dummy, // 9
volume, // A
dummy, // B
dummy, // C
dummy, // D
E_Effects_TickNonZero, // E
dummy, // F
dummy, // G
globalVolSlide, // H
dummy, // I
dummy, // J
keyOffCmd, // K
dummy, // L
dummy, // M
dummy, // N
dummy, // O
panningSlide, // P
dummy, // Q
doMultiRetrig, // R
dummy, // S
tremor, // T
dummy, // U
dummy, // V
dummy, // W
dummy, // X
dummy, // Y
dummy // Z
};
static void handleEffects_TickNonZero(stmTyp *ch)
{
if (ch->stOff)
return; // muted
// volume column effects
VJumpTab_TickNonZero[ch->volKolVol >> 4](ch);
// normal effects
if ((ch->eff == 0 && ch->effTyp == 0) || ch->effTyp > 35)
return; // no effect
JumpTab_TickNonZero[ch->effTyp](ch, ch->eff);
}
static void getNextPos(void)
{
if (song.timer != 1)
return;
song.pattPos++;
if (song.pattDelTime > 0)
{
song.pattDelTime2 = song.pattDelTime;
song.pattDelTime = 0;
}
if (song.pattDelTime2 > 0)
{
song.pattDelTime2--;
if (song.pattDelTime2 > 0)
song.pattPos--;
}
if (song.pBreakFlag)
{
song.pBreakFlag = false;
song.pattPos = song.pBreakPos;
}
if (song.pattPos >= song.pattLen || song.posJumpFlag)
{
song.pattPos = song.pBreakPos;
song.pBreakPos = 0;
song.posJumpFlag = false;
if (playMode != PLAYMODE_PATT && playMode != PLAYMODE_RECPATT)
{
if (bxxOverflow)
{
song.songPos = 0;
bxxOverflow = false;
}
else if (++song.songPos >= song.len)
{
editor.wavReachedEndFlag = true;
song.songPos = song.repS;
}
assert(song.songPos <= 255);
song.pattNr = song.songTab[song.songPos & 0xFF];
song.pattLen = pattLens[song.pattNr & 0xFF];
}
}
}
void pauseMusic(void) // stops reading pattern data
{
musicPaused = true;
while (replayerBusy);
}
void resumeMusic(void) // starts reading pattern data
{
musicPaused = false;
}
void tickReplayer(void) // periodically called from audio callback
{
int32_t i;
stmTyp *c;
if (musicPaused || !songPlaying)
{
c = stm;
for (i = 0; i < song.antChn; i++, c++)
fixaEnvelopeVibrato(c);
return;
}
// for song playback counter (hh:mm:ss)
if (song.speed >= MIN_BPM && song.speed <= MAX_BPM)
song.musicTime64 += musicTimeTab64[song.speed];
bool tickZero = false;
if (--song.timer == 0)
{
song.timer = song.tempo;
tickZero = true;
}
song.curReplayerTimer = (uint8_t)song.timer; // for audio/video syncing (and recording)
const bool readNewNote = tickZero && (song.pattDelTime2 == 0);
if (readNewNote)
{
// set audio/video syncing variables
song.curReplayerPattPos = (uint8_t)song.pattPos;
song.curReplayerPattNr = (uint8_t)song.pattNr;
song.curReplayerSongPos = (uint8_t)song.songPos;
// ----------------------------------------------
const tonTyp *pattPtr = nilPatternLine;
if (patt[song.pattNr] != NULL)
{
assert(song.pattNr >= 0 && song.pattNr < MAX_PATTERNS &&
song.pattPos >= 0 && song.pattPos < MAX_PATT_LEN);
pattPtr = &patt[song.pattNr][song.pattPos * MAX_VOICES];
}
c = stm;
for (i = 0; i < song.antChn; i++, c++, pattPtr++)
{
getNewNote(c, pattPtr);
fixaEnvelopeVibrato(c);
}
}
else
{
c = stm;
for (i = 0; i < song.antChn; i++, c++)
{
handleEffects_TickNonZero(c);
fixaEnvelopeVibrato(c);
}
}
getNextPos();
}
void resetMusic(void)
{
const bool audioWasntLocked = !audio.locked;
if (audioWasntLocked)
lockAudio();
song.timer = 1;
stopVoices();
if (audioWasntLocked)
unlockAudio();
setPos(0, 0, false);
if (!songPlaying)
{
setScrollBarEnd(SB_POS_ED, (song.len - 1) + 5);
setScrollBarPos(SB_POS_ED, 0, false);
}
}
void setPos(int16_t songPos, int16_t pattPos, bool resetTimer)
{
const bool audioWasntLocked = !audio.locked;
if (audioWasntLocked)
lockAudio();
if (songPos > -1)
{
song.songPos = songPos;
if (song.len > 0 && song.songPos >= song.len)
song.songPos = song.len - 1;
song.pattNr = song.songTab[song.songPos];
assert(song.pattNr < MAX_PATTERNS);
song.pattLen = pattLens[song.pattNr];
checkMarkLimits(); // non-FT2 safety
}
if (pattPos > -1)
{
song.pattPos = pattPos;
if (song.pattPos >= song.pattLen)
song.pattPos = song.pattLen-1;
}
// if not playing, update local position variables
if (!songPlaying)
{
if (pattPos > -1)
{
editor.pattPos = (uint8_t)pattPos;
ui.updatePatternEditor = true;
}
if (songPos > -1)
{
editor.editPattern = (uint8_t)song.pattNr;
editor.songPos = song.songPos;
ui.updatePosSections = true;
}
}
if (resetTimer)
song.timer = 1;
if (audioWasntLocked)
unlockAudio();
}
void delta2Samp(int8_t *p, int32_t len, uint8_t typ)
{
if (typ & 16) len >>= 1; // 16-bit
if (typ & 32) len >>= 1; // stereo
if (typ & 32)
{
if (typ & 16)
{
int16_t *p16 = (int16_t *)p;
int16_t olds16L = 0;
int16_t olds16R = 0;
for (int32_t i = 0; i < len; i++)
{
const int16_t news16L = p16[i] + olds16L;
p16[i] = news16L;
olds16L = news16L;
const int16_t news16R = p16[len+i] + olds16R;
p16[len+i] = news16R;
olds16R = news16R;
const int32_t tmp32 = olds16L + olds16R;
p16[i] = (int16_t)(tmp32 >> 1);
}
}
else
{
int8_t *p8 = (int8_t *)p;
int8_t olds8L = 0;
int8_t olds8R = 0;
for (int32_t i = 0; i < len; i++)
{
const int8_t news8L = p8[i] + olds8L;
p8[i] = news8L;
olds8L = news8L;
const int8_t news8R = p8[len+i] + olds8R;
p8[len+i] = news8R;
olds8R = news8R;
const int16_t tmp16 = olds8L + olds8R;
p8[i] = (int8_t)(tmp16 >> 1);
}
}
}
else
{
if (typ & 16)
{
int16_t *p16 = (int16_t *)p;
int16_t olds16L = 0;
for (int32_t i = 0; i < len; i++)
{
const int16_t news16 = p16[i] + olds16L;
p16[i] = news16;
olds16L = news16;
}
}
else
{
int8_t *p8 = (int8_t *)p;
int8_t olds8L = 0;
for (int32_t i = 0; i < len; i++)
{
const int8_t news8 = p8[i] + olds8L;
p8[i] = news8;
olds8L = news8;
}
}
}
}
void samp2Delta(int8_t *p, int32_t len, uint8_t typ)
{
if (typ & 16)
len >>= 1; // 16-bit
if (typ & 16)
{
int16_t *p16 = (int16_t *)p;
int16_t news16 = 0;
for (int32_t i = 0; i < len; i++)
{
const int16_t olds16 = p16[i];
p16[i] -= news16;
news16 = olds16;
}
}
else
{
int8_t *p8 = (int8_t *)p;
int8_t news8 = 0;
for (int32_t i = 0; i < len; i++)
{
const int8_t olds8 = p8[i];
p8[i] -= news8;
news8 = olds8;
}
}
}
bool allocateInstr(int16_t nr)
{
if (instr[nr] != NULL)
return false; // already allocated
instrTyp *p = (instrTyp *)malloc(sizeof (instrTyp));
if (p == NULL)
return false;
memset(p, 0, sizeof (instrTyp));
for (int32_t i = 0; i < MAX_SMP_PER_INST; i++)
{
p->samp[i].pan = 128;
p->samp[i].vol = 64;
}
setStdEnvelope(p, 0, 3);
const bool audioWasntLocked = !audio.locked;
if (audioWasntLocked)
lockAudio();
instr[nr] = p;
if (audioWasntLocked)
unlockAudio();
return true;
}
void freeInstr(int32_t nr)
{
if (instr[nr] == NULL)
return; // not allocated
pauseAudio(); // channel instrument pointers are now cleared
sampleTyp *s = instr[nr]->samp;
for (int32_t i = 0; i < MAX_SMP_PER_INST; i++, s++) // free sample data
{
if (s->origPek != NULL)
free(s->origPek);
}
free(instr[nr]);
instr[nr] = NULL;
resumeAudio();
}
void freeAllInstr(void)
{
pauseAudio(); // channel instrument pointers are now cleared
for (int32_t i = 1; i <= MAX_INST; i++)
{
if (instr[i] != NULL)
{
sampleTyp *s = instr[i]->samp;
for (int32_t j = 0; j < MAX_SMP_PER_INST; j++, s++) // free sample data
{
if (s->origPek != NULL)
free(s->origPek);
}
free(instr[i]);
instr[i] = NULL;
}
}
resumeAudio();
}
void freeSample(int16_t nr, int16_t nr2)
{
if (instr[nr] == NULL)
return; // instrument not allocated
pauseAudio(); // voice sample pointers are now cleared
sampleTyp *s = &instr[nr]->samp[nr2];
if (s->origPek != NULL)
free(s->origPek);
memset(s, 0, sizeof (sampleTyp));
s->pan = 128;
s->vol = 64;
resumeAudio();
}
void freeAllPatterns(void)
{
pauseAudio();
for (int32_t i = 0; i < MAX_PATTERNS; i++)
{
if (patt[i] != NULL)
{
free(patt[i]);
patt[i] = NULL;
}
}
resumeAudio();
}
void setStdEnvelope(instrTyp *ins, int16_t i, uint8_t typ)
{
if (ins == NULL)
return;
pauseMusic();
if (typ & 1)
{
memcpy(ins->envVP, config.stdEnvP[i][0], 2*2*12);
ins->envVPAnt = (uint8_t)config.stdVolEnvAnt[i];
ins->envVSust = (uint8_t)config.stdVolEnvSust[i];
ins->envVRepS = (uint8_t)config.stdVolEnvRepS[i];
ins->envVRepE = (uint8_t)config.stdVolEnvRepE[i];
ins->fadeOut = config.stdFadeOut[i];
ins->vibRate = (uint8_t)config.stdVibRate[i];
ins->vibDepth = (uint8_t)config.stdVibDepth[i];
ins->vibSweep = (uint8_t)config.stdVibSweep[i];
ins->vibTyp = (uint8_t)config.stdVibTyp[i];
ins->envVTyp = (uint8_t)config.stdVolEnvTyp[i];
}
if (typ & 2)
{
memcpy(ins->envPP, config.stdEnvP[i][1], 2*2*12);
ins->envPPAnt = (uint8_t)config.stdPanEnvAnt[0];
ins->envPSust = (uint8_t)config.stdPanEnvSust[0];
ins->envPRepS = (uint8_t)config.stdPanEnvRepS[0];
ins->envPRepE = (uint8_t)config.stdPanEnvRepE[0];
ins->envPTyp = (uint8_t)config.stdPanEnvTyp[0];
}
resumeMusic();
}
void setNoEnvelope(instrTyp *ins)
{
if (ins == NULL)
return;
pauseMusic();
memcpy(ins->envVP, config.stdEnvP[0][0], 2*2*12);
ins->envVPAnt = (uint8_t)config.stdVolEnvAnt[0];
ins->envVSust = (uint8_t)config.stdVolEnvSust[0];
ins->envVRepS = (uint8_t)config.stdVolEnvRepS[0];
ins->envVRepE = (uint8_t)config.stdVolEnvRepE[0];
ins->envVTyp = 0;
memcpy(ins->envPP, config.stdEnvP[0][1], 2*2*12);
ins->envPPAnt = (uint8_t)config.stdPanEnvAnt[0];
ins->envPSust = (uint8_t)config.stdPanEnvSust[0];
ins->envPRepS = (uint8_t)config.stdPanEnvRepS[0];
ins->envPRepE = (uint8_t)config.stdPanEnvRepE[0];
ins->envPTyp = 0;
ins->fadeOut = 0;
ins->vibRate = 0;
ins->vibDepth = 0;
ins->vibSweep = 0;
ins->vibTyp = 0;
resumeMusic();
}
bool patternEmpty(uint16_t nr)
{
if (patt[nr] == NULL)
return true;
const uint8_t *scanPtr = (const uint8_t *)patt[nr];
const uint32_t scanLen = pattLens[nr] * TRACK_WIDTH;
for (uint32_t i = 0; i < scanLen; i++)
{
if (scanPtr[i] != 0)
return false;
}
return true;
}
void updateChanNums(void)
{
assert(!(song.antChn & 1));
const int32_t maxChannelsShown = getMaxVisibleChannels();
int32_t channelsShown = song.antChn;
if (channelsShown > maxChannelsShown)
channelsShown = maxChannelsShown;
ui.numChannelsShown = (uint8_t)channelsShown;
ui.pattChanScrollShown = (song.antChn > maxChannelsShown);
if (ui.patternEditorShown)
{
if (ui.channelOffset > song.antChn-ui.numChannelsShown)
setScrollBarPos(SB_CHAN_SCROLL, song.antChn - ui.numChannelsShown, true);
}
if (ui.pattChanScrollShown)
{
if (ui.patternEditorShown)
{
showScrollBar(SB_CHAN_SCROLL);
showPushButton(PB_CHAN_SCROLL_LEFT);
showPushButton(PB_CHAN_SCROLL_RIGHT);
}
setScrollBarEnd(SB_CHAN_SCROLL, song.antChn);
setScrollBarPageLength(SB_CHAN_SCROLL, ui.numChannelsShown);
}
else
{
hideScrollBar(SB_CHAN_SCROLL);
hidePushButton(PB_CHAN_SCROLL_LEFT);
hidePushButton(PB_CHAN_SCROLL_RIGHT);
setScrollBarPos(SB_CHAN_SCROLL, 0, false);
ui.channelOffset = 0;
}
if (cursor.ch >= ui.channelOffset+ui.numChannelsShown)
cursor.ch = ui.channelOffset+ui.numChannelsShown - 1;
}
void conv8BitSample(int8_t *p, int32_t len, bool stereo)
{
if (stereo)
{
len /= 2;
int8_t *p2 = &p[len];
for (int32_t i = 0; i < len; i++)
{
const int8_t l = p[i] ^ 0x80;
const int8_t r = p2[i] ^ 0x80;
int16_t tmp16 = l + r;
p[i] = (int8_t)(tmp16 >> 1);
}
}
else
{
for (int32_t i = 0; i < len; i++)
p[i] ^= 0x80;
}
}
void conv16BitSample(int8_t *p, int32_t len, bool stereo)
{
int16_t *p16_1 = (int16_t *)p;
len /= 2;
if (stereo)
{
len /= 2;
int16_t *p16_2 = (int16_t *)&p[len * 2];
for (int32_t i = 0; i < len; i++)
{
const int16_t l = p16_1[i] ^ 0x8000;
const int16_t r = p16_2[i] ^ 0x8000;
int32_t tmp32 = l + r;
p16_1[i] = (int16_t)(tmp32 >> 1);
}
}
else
{
for (int32_t i = 0; i < len; i++)
p16_1[i] ^= 0x8000;
}
}
void closeReplayer(void)
{
freeAllInstr();
freeAllPatterns();
// free reserved instruments
if (instr[0] != NULL)
{
free(instr[0]);
instr[0] = NULL;
}
if (instr[130] != NULL)
{
free(instr[130]);
instr[130] = NULL;
}
if (instr[131] != NULL)
{
free(instr[131]);
instr[131] = NULL;
}
freeWindowedSincTables();
}
bool setupReplayer(void)
{
for (int32_t i = 0; i < MAX_PATTERNS; i++)
pattLens[i] = 64;
playMode = PLAYMODE_IDLE;
songPlaying = false;
// unmute all channels (must be done before resetChannels() call)
for (int32_t i = 0; i < MAX_VOICES; i++)
editor.chnMode[i] = 1;
resetChannels();
song.len = 1;
song.antChn = 8;
editor.speed = song.speed = 125;
editor.tempo = song.tempo = 6;
editor.globalVol = song.globVol = 64;
song.initialTempo = song.tempo;
audio.linearPeriodsFlag = true;
note2Period = linearPeriods;
if (!calcWindowedSincTables())
{
showErrorMsgBox("Not enough memory!");
return false;
}
calcPanningTable();
setPos(0, 0, true);
if (!allocateInstr(0))
{
showErrorMsgBox("Not enough memory!");
return false;
}
instr[0]->samp[0].vol = 0;
if (!allocateInstr(130))
{
showErrorMsgBox("Not enough memory!");
return false;
}
memset(instr[130], 0, sizeof (instrTyp));
if (!allocateInstr(131)) // Instr. Ed. display instrument for unallocated/empty instruments
{
showErrorMsgBox("Not enough memory!");
return false;
}
memset(instr[131], 0, sizeof (instrTyp));
for (int32_t i = 0; i < 16; i++)
instr[131]->samp[i].pan = 128;
editor.tmpPattern = 65535; // pattern editor update/redraw kludge
return true;
}
void startPlaying(int8_t mode, int16_t row)
{
lockMixerCallback();
assert(mode != PLAYMODE_IDLE && mode != PLAYMODE_EDIT);
if (mode == PLAYMODE_PATT || mode == PLAYMODE_RECPATT)
setPos(-1, row, true);
else
setPos(editor.songPos, row, true);
playMode = mode;
songPlaying = true;
resetReplayerState();
resetPlaybackTime();
// non-FT2 fix: If song speed was 0, set it back to initial speed on play
if (song.tempo == 0)
song.tempo = song.initialTempo;
audio.dTickSampleCounter = 0.0; // zero tick sample counter so that it will instantly initiate a tick
unlockMixerCallback();
ui.updatePosSections = true;
ui.updatePatternEditor = true;
}
void stopPlaying(void)
{
bool songWasPlaying = songPlaying;
playMode = PLAYMODE_IDLE;
songPlaying = false;
if (config.killNotesOnStopPlay)
{
// safely kills all voices
lockMixerCallback();
unlockMixerCallback();
}
else
{
for (uint8_t i = 0; i < MAX_VOICES; i++)
playTone(i, 0, 97, -1, 0, 0);
}
// if song was playing, update local pattPos (fixes certain glitches)
if (songWasPlaying)
editor.pattPos = song.pattPos;
#ifdef HAS_MIDI
midi.currMIDIVibDepth = 0;
midi.currMIDIPitch = 0;
#endif
memset(editor.keyOnTab, 0, sizeof (editor.keyOnTab));
ui.updatePosSections = true;
ui.updatePatternEditor = true;
// certain non-FT2 fixes
song.timer = editor.timer = 1;
song.globVol = editor.globalVol = 64;
ui.drawGlobVolFlag = true;
}
// from keyboard/smp. ed.
void playTone(uint8_t stmm, uint8_t inst, uint8_t ton, int8_t vol, uint16_t midiVibDepth, uint16_t midiPitch)
{
instrTyp *ins = instr[inst];
if (ins == NULL)
return;
assert(stmm < MAX_VOICES && inst <= MAX_INST && ton <= 97);
stmTyp *ch = &stm[stmm];
// FT2 bugfix: Don't play tone if certain requirements are not met
if (ton != 97)
{
if (ton == 0 || ton > 96)
return;
sampleTyp *s = &ins->samp[ins->ta[ton-1] & 0xF];
int16_t newTon = (int16_t)ton + s->relTon;
if (s->pek == NULL || s->len == 0 || newTon <= 0 || newTon >= 12*10)
return;
}
// -------------------
lockAudio();
if (inst != 0 && ton != 97)
{
ch->tonTyp = (inst << 8) | (ch->tonTyp & 0xFF);
ch->instrNr = inst;
}
ch->tonTyp = (ch->tonTyp & 0xFF00) | ton;
ch->effTyp = 0;
ch->eff = 0;
startTone(ton, 0, 0, ch);
if (ton != 97)
{
retrigVolume(ch);
retrigEnvelopeVibrato(ch);
if (vol != -1) // if jamming note keys, vol -1 = use sample's volume
{
ch->realVol = vol;
ch->outVol = vol;
ch->oldVol = vol;
}
}
ch->midiVibDepth = midiVibDepth;
ch->midiPitch = midiPitch;
fixaEnvelopeVibrato(ch);
unlockAudio();
}
// smp. ed.
void playSample(uint8_t stmm, uint8_t inst, uint8_t smpNr, uint8_t ton, uint16_t midiVibDepth, uint16_t midiPitch)
{
if (instr[inst] == NULL)
return;
// for sampling playback line in Smp. Ed.
lastChInstr[stmm].instrNr = 255;
lastChInstr[stmm].sampleNr = 255;
editor.curPlayInstr = 255;
editor.curPlaySmp = 255;
assert(stmm < MAX_VOICES && inst <= MAX_INST && smpNr < MAX_SMP_PER_INST && ton <= 97);
stmTyp *ch = &stm[stmm];
memcpy(&instr[130]->samp[0], &instr[inst]->samp[smpNr], sizeof (sampleTyp));
uint8_t vol = instr[inst]->samp[smpNr].vol;
lockAudio();
ch->instrNr = 130;
ch->tonTyp = (ch->instrNr << 8) | ton;
ch->effTyp = 0;
startTone(ton, 0, 0, ch);
if (ton != 97)
{
retrigVolume(ch);
retrigEnvelopeVibrato(ch);
ch->realVol = vol;
ch->outVol = vol;
ch->oldVol = vol;
}
ch->midiVibDepth = midiVibDepth;
ch->midiPitch = midiPitch;
fixaEnvelopeVibrato(ch);
unlockAudio();
while (ch->status & IS_NyTon); // wait for sample to latch in mixer
// for sampling playback line in Smp. Ed.
editor.curPlayInstr = editor.curInstr;
editor.curPlaySmp = editor.curSmp;
}
// smp. ed.
void playRange(uint8_t stmm, uint8_t inst, uint8_t smpNr, uint8_t ton, uint16_t midiVibDepth, uint16_t midiPitch, int32_t offs, int32_t len)
{
if (instr[inst] == NULL)
return;
// for sampling playback line in Smp. Ed.
lastChInstr[stmm].instrNr = 255;
lastChInstr[stmm].sampleNr = 255;
editor.curPlayInstr = 255;
editor.curPlaySmp = 255;
assert(stmm < MAX_VOICES && inst <= MAX_INST && smpNr < MAX_SMP_PER_INST && ton <= 97);
stmTyp *ch = &stm[stmm];
sampleTyp *s = &instr[130]->samp[0];
memcpy(s, &instr[inst]->samp[smpNr], sizeof (sampleTyp));
uint8_t vol = instr[inst]->samp[smpNr].vol;
if (s->typ & 16)
{
offs &= 0xFFFFFFFE;
len &= 0xFFFFFFFE;
}
lockAudio();
s->len = offs + len;
s->repS = 0;
s->repL = 0;
s->typ &= 16; // only keep 8-bit/16-bit flag (disable loop)
int32_t samplePlayOffset = offs;
if (s->typ & 16)
samplePlayOffset >>= 1;
ch->instrNr = 130;
ch->tonTyp = (ch->instrNr << 8) | ton;
ch->effTyp = 0;
startTone(ton, 0, 0, ch);
ch->smpStartPos = samplePlayOffset;
if (ton != 97)
{
retrigVolume(ch);
retrigEnvelopeVibrato(ch);
ch->realVol = vol;
ch->outVol = vol;
ch->oldVol = vol;
}
ch->midiVibDepth = midiVibDepth;
ch->midiPitch = midiPitch;
fixaEnvelopeVibrato(ch);
unlockAudio();
while (ch->status & IS_NyTon); // wait for sample to latch in mixer
// for sampling playback line in Smp. Ed.
editor.curPlayInstr = editor.curInstr;
editor.curPlaySmp = editor.curSmp;
}
void stopVoices(void)
{
const bool audioWasntLocked = !audio.locked;
if (audioWasntLocked)
lockAudio();
stmTyp *ch = stm;
for (int32_t i = 0; i < MAX_VOICES; i++, ch++)
{
lastChInstr[i].sampleNr = 255;
lastChInstr[i].instrNr = 255;
ch->tonTyp = 0;
ch->relTonNr = 0;
ch->instrNr = 0;
ch->instrPtr = instr[0]; // important: set instrument pointer to instr 0 (placeholder instrument)
ch->status = IS_Vol;
ch->realVol = 0;
ch->outVol = 0;
ch->oldVol = 0;
ch->dFinalVol = 0.0;
ch->oldPan = 128;
ch->outPan = 128;
ch->finalPan = 128;
ch->vibDepth = 0;
ch->midiVibDepth = 0;
ch->midiPitch = 0;
ch->smpPtr = NULL;
ch->portaDir = 0; // FT2 bugfix: weird 3xx behavior if not used with note
stopVoice(i);
}
// for sampling playback line in Smp. Ed.
editor.curPlayInstr = 255;
editor.curPlaySmp = 255;
stopAllScopes();
resetAudioDither();
resetCachedMixerVars();
resetCachedScopeVars();
// wait for scope thread to finish, so that we know pointers aren't deprecated
while (editor.scopeThreadMutex);
if (audioWasntLocked)
unlockAudio();
}
void resetReplayerState(void)
{
song.pattDelTime = song.pattDelTime2 = 0;
song.posJumpFlag = false;
song.pBreakPos = 0;
song.pBreakFlag = false;
if (songPlaying)
{
song.globVol = 64;
stmTyp *ch = stm;
for (int32_t i = 0; i < song.antChn; i++, ch++)
ch->status |= IS_Vol;
}
}
void setNewSongPos(int32_t pos)
{
resetReplayerState(); // FT2 bugfix
setPos((int16_t)pos, 0, true);
// non-FT2 fix: If song speed was 0, set it back to initial speed
if (song.tempo == 0)
song.tempo = song.initialTempo;
}
void decSongPos(void)
{
if (song.songPos == 0)
return;
const bool audioWasntLocked = !audio.locked;
if (audioWasntLocked)
lockAudio();
if (song.songPos > 0)
setNewSongPos(song.songPos - 1);
if (audioWasntLocked)
unlockAudio();
}
void incSongPos(void)
{
if (song.songPos == song.len-1)
return;
const bool audioWasntLocked = !audio.locked;
if (audioWasntLocked)
lockAudio();
if (song.songPos < song.len-1)
setNewSongPos(song.songPos + 1);
if (audioWasntLocked)
unlockAudio();
}
void decCurIns(void)
{
if (editor.curInstr <= 1)
return;
editor.curInstr--;
if ((editor.curInstr > 0x40 && !editor.instrBankSwapped) || (editor.curInstr <= 0x40 && editor.instrBankSwapped))
pbSwapInstrBank();
editor.instrBankOffset = ((editor.curInstr - 1) / 8) * 8;
updateTextBoxPointers();
updateNewInstrument();
if (ui.advEditShown)
updateAdvEdit();
}
void incCurIns(void)
{
if (editor.curInstr >= MAX_INST)
return;
editor.curInstr++;
if ((editor.curInstr > 0x40 && !editor.instrBankSwapped) || (editor.curInstr <= 0x40 && editor.instrBankSwapped))
pbSwapInstrBank();
editor.instrBankOffset = ((editor.curInstr - 1) / 8) * 8;
if (editor.instrBankOffset > MAX_INST-8)
editor.instrBankOffset = MAX_INST-8;
updateTextBoxPointers();
updateNewInstrument();
if (ui.advEditShown)
updateAdvEdit();
}
void decCurSmp(void)
{
if (editor.curSmp == 0)
return;
editor.curSmp--;
editor.sampleBankOffset = (editor.curSmp / 5) * 5;
setScrollBarPos(SB_SAMPLE_LIST, editor.sampleBankOffset, true);
updateTextBoxPointers();
updateNewSample();
}
void incCurSmp(void)
{
if (editor.curSmp >= MAX_SMP_PER_INST-1)
return;
editor.curSmp++;
editor.sampleBankOffset = (editor.curSmp / 5) * 5;
if (editor.sampleBankOffset > MAX_SMP_PER_INST-5)
editor.sampleBankOffset = MAX_SMP_PER_INST-5;
setScrollBarPos(SB_SAMPLE_LIST, editor.sampleBankOffset, true);
updateTextBoxPointers();
updateNewSample();
}
void pbPlaySong(void)
{
startPlaying(PLAYMODE_SONG, 0);
}
void pbPlayPtn(void)
{
startPlaying(PLAYMODE_PATT, 0);
}
void pbRecSng(void)
{
startPlaying(PLAYMODE_RECSONG, 0);
}
void pbRecPtn(void)
{
startPlaying(PLAYMODE_RECPATT, 0);
}
void setSyncedReplayerVars(void)
{
uint8_t scopeUpdateStatus[MAX_VOICES];
pattSyncEntry = NULL;
chSyncEntry = NULL;
memset(scopeUpdateStatus, 0, sizeof (scopeUpdateStatus)); // this is needed
uint64_t frameTime64 = SDL_GetPerformanceCounter();
// handle channel sync queue
while (chQueueClearing);
while (chQueueReadSize() > 0)
{
if (frameTime64 < getChQueueTimestamp())
break; // we have no more stuff to render for now
chSyncEntry = chQueuePeek();
if (chSyncEntry == NULL)
break;
for (int32_t i = 0; i < song.antChn; i++)
scopeUpdateStatus[i] |= chSyncEntry->channels[i].status; // yes, OR the status
if (!chQueuePop())
break;
}
/* Extra validation because of possible issues when the buffer is full
** and positions are being reset, which is not entirely thread safe.
*/
if (chSyncEntry != NULL && chSyncEntry->timestamp == 0)
chSyncEntry = NULL;
// handle pattern sync queue
while (pattQueueClearing);
while (pattQueueReadSize() > 0)
{
if (frameTime64 < getPattQueueTimestamp())
break; // we have no more stuff to render for now
pattSyncEntry = pattQueuePeek();
if (pattSyncEntry == NULL)
break;
if (!pattQueuePop())
break;
}
/* Extra validation because of possible issues when the buffer is full
** and positions are being reset, which is not entirely thread safe.
*/
if (pattSyncEntry != NULL && pattSyncEntry->timestamp == 0)
pattSyncEntry = NULL;
// do actual updates
if (chSyncEntry != NULL)
{
handleScopesFromChQueue(chSyncEntry, scopeUpdateStatus);
ui.drawReplayerPianoFlag = true;
}
if (!songPlaying || pattSyncEntry == NULL)
return;
// we have a new tick
editor.timer = pattSyncEntry->timer;
if (editor.speed != pattSyncEntry->speed)
{
editor.speed = pattSyncEntry->speed;
ui.drawBPMFlag = true;
}
if (editor.tempo != pattSyncEntry->tempo)
{
editor.tempo = pattSyncEntry->tempo;
ui.drawSpeedFlag = true;
}
if (editor.globalVol != pattSyncEntry->globalVol)
{
editor.globalVol = pattSyncEntry->globalVol;
ui.drawGlobVolFlag = true;
}
if (editor.songPos != pattSyncEntry->songPos)
{
editor.songPos = pattSyncEntry->songPos;
ui.drawPosEdFlag = true;
}
// somewhat of a kludge...
if (editor.tmpPattern != pattSyncEntry->pattern || editor.pattPos != pattSyncEntry->patternPos)
{
// set pattern number
editor.editPattern = editor.tmpPattern = pattSyncEntry->pattern;
checkMarkLimits();
ui.drawPattNumLenFlag = true;
// set row
editor.pattPos = (uint8_t)pattSyncEntry->patternPos;
ui.updatePatternEditor = true;
}
}