ref: 34f94d8f686d27d00fcca2c4bc596d339fd3f5b0
dir: /3rd/lookup3.c/
/* ------------------------------------------------------------------------------- lookup3.c, by Bob Jenkins, May 2006, Public Domain. These are functions for producing 32-bit hashes for hash table lookup. hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() are externally useful functions. You can use this free for any purpose. It's in the public domain. It has no warranty. If you want to find a hash of, say, exactly 7 integers, do a = i1; b = i2; c = i3; mix(a,b,c); a += i4; b += i5; c += i6; mix(a,b,c); a += i7; final(a,b,c); then use c as the hash value. If you have a variable length array of 4-byte integers to hash, use hashword(). If you have a byte array (like a character string), use hashlittle(). If you have several byte arrays, or a mix of things, see the comments above hashlittle(). Why is this so big? I read 12 bytes at a time into 3 4-byte integers, then mix those integers. This is fast (you can do a lot more thorough mixing with 12*3 instructions on 3 integers than you can with 3 instructions on 1 byte), but shoehorning those bytes into integers efficiently is messy. ------------------------------------------------------------------------------- */ /* * My best guess at if you are big-endian or little-endian. This may * need adjustment. */ #if defined(BYTE_ORDER) && defined(LITTLE_ENDIAN) && BYTE_ORDER == LITTLE_ENDIAN #define HASH_LITTLE_ENDIAN 1 #define HASH_BIG_ENDIAN 0 #elif defined(BYTE_ORDER) && defined(BIG_ENDIAN) && BYTE_ORDER == BIG_ENDIAN #define HASH_LITTLE_ENDIAN 0 #define HASH_BIG_ENDIAN 1 #else #error endianess unknown #endif #define hashsize(n) ((uint32_t)1<<(n)) #define hashmask(n) (hashsize(n)-1) #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) /* ------------------------------------------------------------------------------- mix -- mix 3 32-bit values reversibly. This is reversible, so any information in (a,b,c) before mix() is still in (a,b,c) after mix(). If four pairs of (a,b,c) inputs are run through mix(), or through mix() in reverse, there are at least 32 bits of the output that are sometimes the same for one pair and different for another pair. This was tested for: * pairs that differed by one bit, by two bits, in any combination of top bits of (a,b,c), or in any combination of bottom bits of (a,b,c). * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed the output delta to a Gray code (a^(a>>1)) so a string of 1's (as is commonly produced by subtraction) look like a single 1-bit difference. * the base values were pseudorandom, all zero but one bit set, or all zero plus a counter that starts at zero. Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that satisfy this are 4 6 8 16 19 4 9 15 3 18 27 15 14 9 3 7 17 3 Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing for "differ" defined as + with a one-bit base and a two-bit delta. I used http://burtleburtle.net/bob/hash/avalanche.html to choose the operations, constants, and arrangements of the variables. This does not achieve avalanche. There are input bits of (a,b,c) that fail to affect some output bits of (a,b,c), especially of a. The most thoroughly mixed value is c, but it doesn't really even achieve avalanche in c. This allows some parallelism. Read-after-writes are good at doubling the number of bits affected, so the goal of mixing pulls in the opposite direction as the goal of parallelism. I did what I could. Rotates seem to cost as much as shifts on every machine I could lay my hands on, and rotates are much kinder to the top and bottom bits, so I used rotates. ------------------------------------------------------------------------------- */ #define mix(a,b,c) \ { \ a -= c; a ^= rot(c, 4); c += b; \ b -= a; b ^= rot(a, 6); a += c; \ c -= b; c ^= rot(b, 8); b += a; \ a -= c; a ^= rot(c,16); c += b; \ b -= a; b ^= rot(a,19); a += c; \ c -= b; c ^= rot(b, 4); b += a; \ } /* ------------------------------------------------------------------------------- final -- final mixing of 3 32-bit values (a,b,c) into c Pairs of (a,b,c) values differing in only a few bits will usually produce values of c that look totally different. This was tested for * pairs that differed by one bit, by two bits, in any combination of top bits of (a,b,c), or in any combination of bottom bits of (a,b,c). * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed the output delta to a Gray code (a^(a>>1)) so a string of 1's (as is commonly produced by subtraction) look like a single 1-bit difference. * the base values were pseudorandom, all zero but one bit set, or all zero plus a counter that starts at zero. These constants passed: 14 11 25 16 4 14 24 12 14 25 16 4 14 24 and these came close: 4 8 15 26 3 22 24 10 8 15 26 3 22 24 11 8 15 26 3 22 24 ------------------------------------------------------------------------------- */ #define final(a,b,c) \ { \ c ^= b; c -= rot(b,14); \ a ^= c; a -= rot(c,11); \ b ^= a; b -= rot(a,25); \ c ^= b; c -= rot(b,16); \ a ^= c; a -= rot(c,4); \ b ^= a; b -= rot(a,14); \ c ^= b; c -= rot(b,24); \ } /* -------------------------------------------------------------------- This works on all machines. To be useful, it requires -- that the key be an array of uint32_t's, and -- that the length be the number of uint32_t's in the key The function hashword() is identical to hashlittle() on little-endian machines, and identical to hashbig() on big-endian machines, except that the length has to be measured in uint32_ts rather than in bytes. hashlittle() is more complicated than hashword() only because hashlittle() has to dance around fitting the key bytes into registers. -------------------------------------------------------------------- */ uint32_t hashword( const uint32_t *k, /* the key, an array of uint32_t values */ size_t length, /* the length of the key, in uint32_ts */ uint32_t initval) /* the previous hash, or an arbitrary value */ { uint32_t a,b,c; /* Set up the internal state */ a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval; /*------------------------------------------------- handle most of the key */ while (length > 3) { a += k[0]; b += k[1]; c += k[2]; mix(a,b,c); length -= 3; k += 3; } /*------------------------------------------- handle the last 3 uint32_t's */ switch(length) /* all the case statements fall through */ { case 3 : c+=k[2]; // fallthrough case 2 : b+=k[1]; // fallthrough case 1 : a+=k[0]; // fallthrough final(a,b,c); case 0: /* case 0: nothing left to add */ break; } /*------------------------------------------------------ report the result */ return c; } /* -------------------------------------------------------------------- hashword2() -- same as hashword(), but take two seeds and return two 32-bit values. pc and pb must both be nonnull, and *pc and *pb must both be initialized with seeds. If you pass in (*pb)==0, the output (*pc) will be the same as the return value from hashword(). -------------------------------------------------------------------- */ void hashword2 ( const uint32_t *k, /* the key, an array of uint32_t values */ size_t length, /* the length of the key, in uint32_ts */ uint32_t *pc, /* IN: seed OUT: primary hash value */ uint32_t *pb) /* IN: more seed OUT: secondary hash value */ { uint32_t a,b,c; /* Set up the internal state */ a = b = c = 0xdeadbeef + ((uint32_t)(length<<2)) + *pc; c += *pb; /*------------------------------------------------- handle most of the key */ while (length > 3) { a += k[0]; b += k[1]; c += k[2]; mix(a,b,c); length -= 3; k += 3; } /*------------------------------------------- handle the last 3 uint32_t's */ switch(length) /* all the case statements fall through */ { case 3 : c+=k[2]; // fallthrough case 2 : b+=k[1]; // fallthrough case 1 : a+=k[0]; // fallthrough final(a,b,c); case 0: /* case 0: nothing left to add */ break; } /*------------------------------------------------------ report the result */ *pc=c; *pb=b; } /* * hashlittle2: return 2 32-bit hash values * * This is identical to hashlittle(), except it returns two 32-bit hash * values instead of just one. This is good enough for hash table * lookup with 2^^64 buckets, or if you want a second hash if you're not * happy with the first, or if you want a probably-unique 64-bit ID for * the key. *pc is better mixed than *pb, so use *pc first. If you want * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)". */ void hashlittle2( const void *key, /* the key to hash */ size_t length, /* length of the key */ uint32_t *pc, /* IN: primary initval, OUT: primary hash */ uint32_t *pb) /* IN: secondary initval, OUT: secondary hash */ { uint32_t a,b,c; /* internal state */ union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ /* Set up the internal state */ a = b = c = 0xdeadbeef + ((uint32_t)length) + *pc; c += *pb; u.ptr = key; if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ const uint8_t *k8; /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ while (length > 12) { a += k[0]; b += k[1]; c += k[2]; mix(a,b,c); length -= 12; k += 3; } /*----------------------------- handle the last (probably partial) block */ /* * "k[2]&0xffffff" actually reads beyond the end of the string, but * then masks off the part it's not allowed to read. Because the * string is aligned, the masked-off tail is in the same word as the * rest of the string. Every machine with memory protection I've seen * does it on word boundaries, so is OK with this. But VALGRIND will * still catch it and complain. The masking trick does make the hash * noticably faster for short strings (like English words). */ #ifndef VALGRIND (void)k8; switch(length) { case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; case 8 : b+=k[1]; a+=k[0]; break; case 7 : b+=k[1]&0xffffff; a+=k[0]; break; case 6 : b+=k[1]&0xffff; a+=k[0]; break; case 5 : b+=k[1]&0xff; a+=k[0]; break; case 4 : a+=k[0]; break; case 3 : a+=k[0]&0xffffff; break; case 2 : a+=k[0]&0xffff; break; case 1 : a+=k[0]&0xff; break; case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ } #else /* make valgrind happy */ k8 = (const uint8_t *)k; switch(length) { case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ case 9 : c+=k8[8]; /* fall through */ case 8 : b+=k[1]; a+=k[0]; break; case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ case 5 : b+=k8[4]; /* fall through */ case 4 : a+=k[0]; break; case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ case 1 : a+=k8[0]; break; case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ } #endif /* !valgrind */ } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ const uint8_t *k8; /*--------------- all but last block: aligned reads and different mixing */ while (length > 12) { a += k[0] + (((uint32_t)k[1])<<16); b += k[2] + (((uint32_t)k[3])<<16); c += k[4] + (((uint32_t)k[5])<<16); mix(a,b,c); length -= 12; k += 6; } /*----------------------------- handle the last (probably partial) block */ k8 = (const uint8_t *)k; switch(length) { case 12: c+=k[4]+(((uint32_t)k[5])<<16); b+=k[2]+(((uint32_t)k[3])<<16); a+=k[0]+(((uint32_t)k[1])<<16); break; case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ case 10: c+=k[4]; b+=k[2]+(((uint32_t)k[3])<<16); a+=k[0]+(((uint32_t)k[1])<<16); break; case 9 : c+=k8[8]; /* fall through */ case 8 : b+=k[2]+(((uint32_t)k[3])<<16); a+=k[0]+(((uint32_t)k[1])<<16); break; case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ case 6 : b+=k[2]; a+=k[0]+(((uint32_t)k[1])<<16); break; case 5 : b+=k8[4]; /* fall through */ case 4 : a+=k[0]+(((uint32_t)k[1])<<16); break; case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ case 2 : a+=k[0]; break; case 1 : a+=k8[0]; break; case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ } } else { /* need to read the key one byte at a time */ const uint8_t *k = (const uint8_t *)key; /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ while (length > 12) { a += k[0]; a += ((uint32_t)k[1])<<8; a += ((uint32_t)k[2])<<16; a += ((uint32_t)k[3])<<24; b += k[4]; b += ((uint32_t)k[5])<<8; b += ((uint32_t)k[6])<<16; b += ((uint32_t)k[7])<<24; c += k[8]; c += ((uint32_t)k[9])<<8; c += ((uint32_t)k[10])<<16; c += ((uint32_t)k[11])<<24; mix(a,b,c); length -= 12; k += 12; } /*-------------------------------- last block: affect all 32 bits of (c) */ switch(length) /* all the case statements fall through */ { case 12: c+=((uint32_t)k[11])<<24; // fallthrough case 11: c+=((uint32_t)k[10])<<16; // fallthrough case 10: c+=((uint32_t)k[9])<<8; // fallthrough case 9 : c+=k[8]; // fallthrough case 8 : b+=((uint32_t)k[7])<<24; // fallthrough case 7 : b+=((uint32_t)k[6])<<16; // fallthrough case 6 : b+=((uint32_t)k[5])<<8; // fallthrough case 5 : b+=k[4]; // fallthrough case 4 : a+=((uint32_t)k[3])<<24; // fallthrough case 3 : a+=((uint32_t)k[2])<<16; // fallthrough case 2 : a+=((uint32_t)k[1])<<8; // fallthrough case 1 : a+=k[0]; break; case 0 : *pc=c; *pb=b; return; /* zero length strings require no mixing */ } } final(a,b,c); *pc=c; *pb=b; }