ref: c38b3923bbb14fcdf00f6fa31104bf57d27150b3
dir: /src/looprestoration.c/
/* * Copyright © 2018, VideoLAN and dav1d authors * Copyright © 2018, Two Orioles, LLC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include <stdlib.h> #include "common/intops.h" #include "src/looprestoration.h" #include "src/tables.h" // 256 * 1.5 + 3 + 3 = 390 #define REST_UNIT_STRIDE (390) // TODO Reuse p when no padding is needed (add and remove lpf pixels in p) // TODO Chroma only requires 2 rows of padding. static void padding(pixel *dst, const pixel *p, const ptrdiff_t p_stride, const pixel (*left)[4], const pixel *lpf, const ptrdiff_t lpf_stride, int unit_w, const int stripe_h, const enum LrEdgeFlags edges) { const int have_left = !!(edges & LR_HAVE_LEFT); const int have_right = !!(edges & LR_HAVE_RIGHT); // Copy more pixels if we don't have to pad them unit_w += 3 * have_left + 3 * have_right; pixel *dst_l = dst + 3 * !have_left; p -= 3 * have_left; lpf -= 3 * have_left; if (edges & LR_HAVE_TOP) { // Copy previous loop filtered rows const pixel *const above_1 = lpf; const pixel *const above_2 = above_1 + PXSTRIDE(lpf_stride); pixel_copy(dst_l, above_1, unit_w); pixel_copy(dst_l + REST_UNIT_STRIDE, above_1, unit_w); pixel_copy(dst_l + 2 * REST_UNIT_STRIDE, above_2, unit_w); } else { // Pad with first row pixel_copy(dst_l, p, unit_w); pixel_copy(dst_l + REST_UNIT_STRIDE, p, unit_w); pixel_copy(dst_l + 2 * REST_UNIT_STRIDE, p, unit_w); if (have_left) { pixel_copy(dst_l, &left[0][1], 3); pixel_copy(dst_l + REST_UNIT_STRIDE, &left[0][1], 3); pixel_copy(dst_l + 2 * REST_UNIT_STRIDE, &left[0][1], 3); } } pixel *dst_tl = dst_l + 3 * REST_UNIT_STRIDE; if (edges & LR_HAVE_BOTTOM) { // Copy next loop filtered rows const pixel *const below_1 = lpf + 6 * PXSTRIDE(lpf_stride); const pixel *const below_2 = below_1 + PXSTRIDE(lpf_stride); pixel_copy(dst_tl + stripe_h * REST_UNIT_STRIDE, below_1, unit_w); pixel_copy(dst_tl + (stripe_h + 1) * REST_UNIT_STRIDE, below_2, unit_w); pixel_copy(dst_tl + (stripe_h + 2) * REST_UNIT_STRIDE, below_2, unit_w); } else { // Pad with last row const pixel *const src = p + (stripe_h - 1) * PXSTRIDE(p_stride); pixel_copy(dst_tl + stripe_h * REST_UNIT_STRIDE, src, unit_w); pixel_copy(dst_tl + (stripe_h + 1) * REST_UNIT_STRIDE, src, unit_w); pixel_copy(dst_tl + (stripe_h + 2) * REST_UNIT_STRIDE, src, unit_w); if (have_left) { pixel_copy(dst_tl + stripe_h * REST_UNIT_STRIDE, &left[stripe_h - 1][1], 3); pixel_copy(dst_tl + (stripe_h + 1) * REST_UNIT_STRIDE, &left[stripe_h - 1][1], 3); pixel_copy(dst_tl + (stripe_h + 2) * REST_UNIT_STRIDE, &left[stripe_h - 1][1], 3); } } // Inner UNIT_WxSTRIPE_H for (int j = 0; j < stripe_h; j++) { pixel_copy(dst_tl + 3 * have_left, p + 3 * have_left, unit_w - 3 * have_left); dst_tl += REST_UNIT_STRIDE; p += PXSTRIDE(p_stride); } if (!have_right) { pixel *pad = dst_l + unit_w; pixel *row_last = &dst_l[unit_w - 1]; // Pad 3x(STRIPE_H+6) with last column for (int j = 0; j < stripe_h + 6; j++) { pixel_set(pad, *row_last, 3); pad += REST_UNIT_STRIDE; row_last += REST_UNIT_STRIDE; } } if (!have_left) { // Pad 3x(STRIPE_H+6) with first column for (int j = 0; j < stripe_h + 6; j++) { pixel_set(dst, *dst_l, 3); dst += REST_UNIT_STRIDE; dst_l += REST_UNIT_STRIDE; } } else { dst += 3 * REST_UNIT_STRIDE; for (int j = 0; j < stripe_h; j++) { pixel_copy(dst, &left[j][1], 3); dst += REST_UNIT_STRIDE; } } } // FIXME Could split into luma and chroma specific functions, // (since first and last tops are always 0 for chroma) // FIXME Could implement a version that requires less temporary memory // (should be possible to implement with only 6 rows of temp storage) static void wiener_c(pixel *p, const ptrdiff_t p_stride, const pixel (*const left)[4], const pixel *lpf, const ptrdiff_t lpf_stride, const int w, const int h, const int16_t filterh[7], const int16_t filterv[7], const enum LrEdgeFlags edges) { // Wiener filtering is applied to a maximum stripe height of 64 + 3 pixels // of padding above and below pixel tmp[70 /*(64 + 3 + 3)*/ * REST_UNIT_STRIDE]; pixel *tmp_ptr = tmp; padding(tmp, p, p_stride, left, lpf, lpf_stride, w, h, edges); // Values stored between horizontal and vertical filtering don't // fit in a uint8_t. uint16_t hor[70 /*(64 + 3 + 3)*/ * REST_UNIT_STRIDE]; uint16_t *hor_ptr = hor; const int round_bits_h = 3 + (BITDEPTH == 12) * 2; const int rounding_off_h = 1 << (round_bits_h - 1); const int clip_limit = 1 << ((BITDEPTH) + 1 + 7 - round_bits_h); for (int j = 0; j < h + 6; j++) { for (int i = 0; i < w; i++) { int sum = (tmp_ptr[i + 3] << 7) + (1 << (BITDEPTH + 6)); for (int k = 0; k < 7; k++) { sum += tmp_ptr[i + k] * filterh[k]; } hor_ptr[i] = iclip((sum + rounding_off_h) >> round_bits_h, 0, clip_limit); } tmp_ptr += REST_UNIT_STRIDE; hor_ptr += REST_UNIT_STRIDE; } const int round_bits_v = 11 - (BITDEPTH == 12) * 2; const int rounding_off_v = 1 << (round_bits_v - 1); const int round_offset = 1 << (BITDEPTH + (round_bits_v - 1)); for (int i = 0; i < w; i++) { for (int j = 0; j < h; j++) { int sum = (hor[(j + 3) * REST_UNIT_STRIDE + i] << 7) - round_offset; for (int k = 0; k < 7; k++) { sum += hor[(j + k) * REST_UNIT_STRIDE + i] * filterv[k]; } p[j * PXSTRIDE(p_stride) + i] = iclip_pixel((sum + rounding_off_v) >> round_bits_v); } } } // Sum over a 3x3 area // The dst and src pointers are positioned 3 pixels above and 3 pixels to the // left of the top left corner. However, the self guided filter only needs 1 // pixel above and one pixel to the left. As for the pixels below and to the // right they must be computed in the sums, but don't need to be stored. // // Example for a 4x4 block: // x x x x x x x x x x // x c c c c c c c c x // x i s s s s s s i x // x i s s s s s s i x // x i s s s s s s i x // x i s s s s s s i x // x i s s s s s s i x // x i s s s s s s i x // x c c c c c c c c x // x x x x x x x x x x // // s: Pixel summed and stored // i: Pixel summed and stored (between loops) // c: Pixel summed not stored // x: Pixel not summed not stored static void boxsum3(coef *dst, const pixel *src, const int w, const int h) { // We skip the first row, as it is never used src += REST_UNIT_STRIDE; dst += REST_UNIT_STRIDE; // We skip the first and last columns, as they are never used for (int x = 1; x < w - 1; x++) { coef *ds = dst + x; const pixel *s = src + x; int a = s[0], b = s[REST_UNIT_STRIDE]; // We skip the first 2 rows, as they are skipped in the next loop and // we don't need the last 2 row as it is skipped in the next loop for (int y = 2; y < h - 2; y++) { s += REST_UNIT_STRIDE; const int c = s[REST_UNIT_STRIDE]; ds += REST_UNIT_STRIDE; *ds = a + b + c; a = b; b = c; } } // We skip the first 2 rows as they are never read dst += REST_UNIT_STRIDE; // We skip the last 2 rows as it is never read for (int y = 2; y < h - 2; y++) { int a = dst[1], b = dst[2]; // We don't store the first column as it is never read and // we don't store the last 2 columns as they are never read for (int x = 2; x < w - 2; x++) { const int c = dst[x + 1]; dst[x] = a + b + c; a = b; b = c; } dst += REST_UNIT_STRIDE; } } // Sum over a 5x5 area // The dst and src pointers are positioned 3 pixels above and 3 pixels to the // left of the top left corner. However, the self guided filter only needs 1 // pixel above and one pixel to the left. As for the pixels below and to the // right they must be computed in the sums, but don't need to be stored. // // Example for a 4x4 block: // c c c c c c c c c c // c c c c c c c c c c // i i s s s s s s i i // i i s s s s s s i i // i i s s s s s s i i // i i s s s s s s i i // i i s s s s s s i i // i i s s s s s s i i // c c c c c c c c c c // c c c c c c c c c c // // s: Pixel summed and stored // i: Pixel summed and stored (between loops) // c: Pixel summed not stored // x: Pixel not summed not stored static void boxsum5(coef *dst, const pixel *const src, const int w, const int h) { // We skip the first row, as it is never used dst += REST_UNIT_STRIDE; for (int x = 0; x < w; x++) { coef *ds = dst + x; const pixel *s = src + 3 * REST_UNIT_STRIDE + x; int a = s[-3 * REST_UNIT_STRIDE]; int b = s[-2 * REST_UNIT_STRIDE]; int c = s[-1 * REST_UNIT_STRIDE]; int d = s[0]; // We skip the first 2 rows, as they are skipped in the next loop and // we don't need the last 2 row as it is skipped in the next loop for (int y = 2; y < h - 2; y++) { s += REST_UNIT_STRIDE; const int e = *s; ds += REST_UNIT_STRIDE; *ds = a + b + c + d + e; a = b; b = c; c = d; d = e; } } // We skip the first 2 rows as they are never read dst += REST_UNIT_STRIDE; for (int y = 2; y < h - 2; y++) { int a = dst[0]; int b = dst[1]; int c = dst[2]; int d = dst[3]; for (int x = 2; x < w - 2; x++) { const int e = dst[x + 2]; dst[x] = a + b + c + d + e; a = b; b = c; c = d; d = e; } dst += REST_UNIT_STRIDE; } } // See boxsum3 function comments for details on row and column skipping static void boxsum3sqr(int32_t *dst, const pixel *src, const int w, const int h) { // We skip the first row, as it is never used src += REST_UNIT_STRIDE; dst += REST_UNIT_STRIDE; // We skip the first and last columns, as they are never used for (int x = 1; x < w - 1; x++) { int *ds = dst + x; const pixel *s = src + x; int a = s[0] * s[0]; int b = s[REST_UNIT_STRIDE] * s[REST_UNIT_STRIDE]; // We skip the first row, as it is skipped in the next loop and // we don't need the last row as it is skipped in the next loop for (int y = 2; y < h - 2; y++) { s += REST_UNIT_STRIDE; const int c = s[REST_UNIT_STRIDE] * s[REST_UNIT_STRIDE]; ds += REST_UNIT_STRIDE; *ds = a + b + c; a = b; b = c; } } // We skip the first row as it is never read dst += REST_UNIT_STRIDE; // We skip the last row as it is never read for (int y = 2; y < h - 2; y++) { int a = dst[1], b = dst[2]; // We don't store the first column as it is never read and // we don't store the last 2 columns as they are never read for (int x = 2; x < w - 2; x++) { const int c = dst[x + 1]; dst[x] = a + b + c; a = b; b = c; } dst += REST_UNIT_STRIDE; } } // See boxsum5 function comments for details on row and column skipping static void boxsum5sqr(int32_t *dst, const pixel *const src, const int w, const int h) { // We skip the first row, as it is never used dst += REST_UNIT_STRIDE; for (int x = 0; x < w; x++) { int *ds = dst + x; const pixel *s = src + 3 * REST_UNIT_STRIDE + x; int a = s[-3 * REST_UNIT_STRIDE] * s[-3 * REST_UNIT_STRIDE]; int b = s[-2 * REST_UNIT_STRIDE] * s[-2 * REST_UNIT_STRIDE]; int c = s[-1 * REST_UNIT_STRIDE] * s[-1 * REST_UNIT_STRIDE]; int d = s[0] * s[0]; // We skip the first 2 rows, as they are skipped in the next loop and // we don't need the last 2 row as it is skipped in the next loop for (int y = 2; y < h - 2; y++) { s += REST_UNIT_STRIDE; const int e = s[0] * s[0]; ds += REST_UNIT_STRIDE; *ds = a + b + c + d + e; a = b; b = c; c = d; d = e; } } // We skip the first 2 rows as they are never read dst += REST_UNIT_STRIDE; for (int y = 2; y < h - 2; y++) { int a = dst[0]; int b = dst[1]; int c = dst[2]; int d = dst[3]; for (int x = 2; x < w - 2; x++) { const int e = dst[x + 2]; dst[x] = a + b + c + d + e; a = b; b = c; c = d; d = e; } dst += REST_UNIT_STRIDE; } } static void selfguided_filter(int32_t *dst, const pixel *src, const ptrdiff_t src_stride, const int w, const int h, const int n, const int s) { // Selfguided filter is applied to a maximum stripe height of 64 + 3 pixels // of padding above and below int32_t A_[70 /*(64 + 3 + 3)*/ * REST_UNIT_STRIDE]; int32_t *A = A_ + 3 * REST_UNIT_STRIDE + 3; // By inverting A and B after the boxsums, B can be of size coef instead // of int32_t coef B_[70 /*(64 + 3 + 3)*/ * REST_UNIT_STRIDE]; coef *B = B_ + 3 * REST_UNIT_STRIDE + 3; const int step = (n == 25) + 1; if (n == 25) { boxsum5(B_, src, w + 6, h + 6); boxsum5sqr(A_, src, w + 6, h + 6); } else { boxsum3(B_, src, w + 6, h + 6); boxsum3sqr(A_, src, w + 6, h + 6); } int32_t *AA = A - REST_UNIT_STRIDE; coef *BB = B - REST_UNIT_STRIDE; for (int j = -1; j < h + 1; j+= step) { for (int i = -1; i < w + 1; i++) { const int a = (AA[i] + (1 << (2 * (BITDEPTH - 8)) >> 1)) >> (2 * (BITDEPTH - 8)); const int b = (BB[i] + (1 << (BITDEPTH - 8) >> 1)) >> (BITDEPTH - 8); const uint32_t p = (a * n >= b * b) * (a * n - b * b); const uint32_t z = (p * s + (1 << 19)) >> 20; const int x = dav1d_sgr_x_by_xplus1[imin(z, 255)]; // This is where we invert A and B, so that B is of size coef. AA[i] = (((1 << 8) - x) * BB[i] * dav1d_sgr_one_by_x[n - 1] + (1 << 11)) >> 12; BB[i] = x; } AA += step * REST_UNIT_STRIDE; BB += step * REST_UNIT_STRIDE; } src += 3 * REST_UNIT_STRIDE + 3; if (n == 25) { int j = 0; #define SIX_NEIGHBORS(P, i)\ ((P[i - REST_UNIT_STRIDE] + P[i + REST_UNIT_STRIDE]) * 6 + \ (P[i - 1 - REST_UNIT_STRIDE] + P[i - 1 + REST_UNIT_STRIDE] + \ P[i + 1 - REST_UNIT_STRIDE] + P[i + 1 + REST_UNIT_STRIDE]) * 5) for (; j < h - 1; j+=2) { for (int i = 0; i < w; i++) { const int32_t a = SIX_NEIGHBORS(B, i); const int32_t b = SIX_NEIGHBORS(A, i); dst[i] = (a * src[i] + b + (1 << 8)) >> 9; } dst += 384 /* Maximum restoration width is 384 (256 * 1.5) */; src += REST_UNIT_STRIDE; B += REST_UNIT_STRIDE; A += REST_UNIT_STRIDE; for (int i = 0; i < w; i++) { const int32_t a = B[i] * 6 + (B[i - 1] + B[i + 1]) * 5; const int32_t b = A[i] * 6 + (A[i - 1] + A[i + 1]) * 5; dst[i] = (a * src[i] + b + (1 << 7)) >> 8; } dst += 384 /* Maximum restoration width is 384 (256 * 1.5) */; src += REST_UNIT_STRIDE; B += REST_UNIT_STRIDE; A += REST_UNIT_STRIDE; } if (j + 1 == h) { // Last row, when number of rows is odd for (int i = 0; i < w; i++) { const int32_t a = SIX_NEIGHBORS(B, i); const int32_t b = SIX_NEIGHBORS(A, i); dst[i] = (a * src[i] + b + (1 << 8)) >> 9; } } #undef SIX_NEIGHBORS } else { #define EIGHT_NEIGHBORS(P, i)\ ((P[i] + P[i - 1] + P[i + 1] + P[i - REST_UNIT_STRIDE] + P[i + REST_UNIT_STRIDE]) * 4 + \ (P[i - 1 - REST_UNIT_STRIDE] + P[i - 1 + REST_UNIT_STRIDE] + \ P[i + 1 - REST_UNIT_STRIDE] + P[i + 1 + REST_UNIT_STRIDE]) * 3) for (int j = 0; j < h; j++) { for (int i = 0; i < w; i++) { const int32_t a = EIGHT_NEIGHBORS(B, i); const int32_t b = EIGHT_NEIGHBORS(A, i); dst[i] = (a * src[i] + b + (1 << 8)) >> 9; } dst += 384; src += REST_UNIT_STRIDE; B += REST_UNIT_STRIDE; A += REST_UNIT_STRIDE; } } #undef NINE_NEIGHBORS } static void selfguided_c(pixel *p, const ptrdiff_t p_stride, const pixel (*const left)[4], const pixel *lpf, const ptrdiff_t lpf_stride, const int w, const int h, const int sgr_idx, const int16_t sgr_w[2], const enum LrEdgeFlags edges) { // Selfguided filter is applied to a maximum stripe height of 64 + 3 pixels // of padding above and below pixel tmp[70 /*(64 + 3 + 3)*/ * REST_UNIT_STRIDE]; padding(tmp, p, p_stride, left, lpf, lpf_stride, w, h, edges); // Selfguided filter outputs to a maximum stripe height of 64 and a // maximum restoration width of 384 (256 * 1.5) int32_t dst[64 * 384]; // both r1 and r0 can't be zero if (!dav1d_sgr_params[sgr_idx][0]) { const int s1 = dav1d_sgr_params[sgr_idx][3]; selfguided_filter(dst, tmp, REST_UNIT_STRIDE, w, h, 9, s1); const int w1 = (1 << 7) - sgr_w[1]; for (int j = 0; j < h; j++) { for (int i = 0; i < w; i++) { const int32_t u = (p[i] << 4); const int32_t v = (u << 7) + w1 * (dst[j * 384 + i] - u); p[i] = iclip_pixel((v + (1 << 10)) >> 11); } p += PXSTRIDE(p_stride); } } else if (!dav1d_sgr_params[sgr_idx][1]) { const int s0 = dav1d_sgr_params[sgr_idx][2]; selfguided_filter(dst, tmp, REST_UNIT_STRIDE, w, h, 25, s0); const int w0 = sgr_w[0]; for (int j = 0; j < h; j++) { for (int i = 0; i < w; i++) { const int32_t u = (p[i] << 4); const int32_t v = (u << 7) + w0 * (dst[j * 384 + i] - u); p[i] = iclip_pixel((v + (1 << 10)) >> 11); } p += PXSTRIDE(p_stride); } } else { int32_t dst1[64 * 384]; const int s0 = dav1d_sgr_params[sgr_idx][2]; const int s1 = dav1d_sgr_params[sgr_idx][3]; const int w0 = sgr_w[0]; const int w1 = (1 << 7) - w0 - sgr_w[1]; selfguided_filter(dst, tmp, REST_UNIT_STRIDE, w, h, 25, s0); selfguided_filter(dst1, tmp, REST_UNIT_STRIDE, w, h, 9, s1); for (int j = 0; j < h; j++) { for (int i = 0; i < w; i++) { const int32_t u = (p[i] << 4); const int32_t v = (u << 7) + w0 * (dst[j * 384 + i] - u) + w1 * (dst1[j * 384 + i] - u); p[i] = iclip_pixel((v + (1 << 10)) >> 11); } p += PXSTRIDE(p_stride); } } } void bitfn(dav1d_loop_restoration_dsp_init)(Dav1dLoopRestorationDSPContext *const c) { c->wiener = wiener_c; c->selfguided = selfguided_c; #if ARCH_X86 && BITDEPTH == 8 bitfn(dav1d_loop_restoration_dsp_init_x86)(c); #endif }