shithub: dav1d

ref: 5f122cd5696dd10a0fc8ad117c3f68cd8edeabf8
dir: /src/cdef.c/

View raw version
/*
 * Copyright © 2018, VideoLAN and dav1d authors
 * Copyright © 2018, Two Orioles, LLC
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Copyright (c) 2001-2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "config.h"

#include <assert.h>
#include <stdlib.h>

#include "common/intops.h"

#include "src/cdef.h"

static const int8_t cdef_directions4[8 /* dir */][2 /* pass */] = {
    { -1 * 8 + 1, -2 * 8 + 2 },
    {  0 * 8 + 1, -1 * 8 + 2 },
    {  0 * 8 + 1,  0 * 8 + 2 },
    {  0 * 8 + 1,  1 * 8 + 2 },
    {  1 * 8 + 1,  2 * 8 + 2 },
    {  1 * 8 + 0,  2 * 8 + 1 },
    {  1 * 8 + 0,  2 * 8 + 0 },
    {  1 * 8 + 0,  2 * 8 - 1 }
};

static const int8_t cdef_directions8[8 /* dir */][2 /* pass */] = {
    { -1 * 16 + 1, -2 * 16 + 2 },
    {  0 * 16 + 1, -1 * 16 + 2 },
    {  0 * 16 + 1,  0 * 16 + 2 },
    {  0 * 16 + 1,  1 * 16 + 2 },
    {  1 * 16 + 1,  2 * 16 + 2 },
    {  1 * 16 + 0,  2 * 16 + 1 },
    {  1 * 16 + 0,  2 * 16 + 0 },
    {  1 * 16 + 0,  2 * 16 - 1 }
};
static const uint8_t cdef_pri_taps[2][2] = { { 4, 2 }, { 3, 3 } };
static const uint8_t cdef_sec_taps[2][2] = { { 2, 1 }, { 2, 1 } };

static inline int constrain(const int diff, const int threshold,
                            const int damping)
{
    if (!threshold) return 0;
    const int shift = imax(0, damping - ulog2(threshold));
    return apply_sign(imin(abs(diff), imax(0, threshold - (abs(diff) >> shift))),
                      diff);
}

/*
 * <code partially copied from libaom>
 */

#define CDEF_VERY_LARGE (30000)

static void fill(uint16_t *tmp, const ptrdiff_t stride,
                 const int w, const int h)
{
    for (int y = 0; y < h; y++) {
        for (int x = 0; x < w; x++)
            tmp[x] = CDEF_VERY_LARGE;
        tmp += stride;
    }
}

/* Smooth in the direction detected. */
static void cdef_filter_block_c(pixel *const dst, const ptrdiff_t dst_stride,
                                /*const*/ pixel *const top[2],
                                const int w, const int h, const int pri_strength,
                                const int sec_strength, const int dir,
                                const int damping, const enum CdefEdgeFlags edges)
{
    const ptrdiff_t tmp_stride = 16 >> (w == 4);
    assert((w == 4 || w == 8) && (h == 4 || h == 8));
    uint16_t tmp[192];  // 16*12 is the maximum value of tmp_stride * (h + 4)
    uint16_t *tmp2 = tmp + 2 * tmp_stride + 2;
    const uint8_t *const pri_taps = cdef_pri_taps[(pri_strength >> (BITDEPTH - 8)) & 1];
    const uint8_t *const sec_taps = cdef_sec_taps[(pri_strength >> (BITDEPTH - 8)) & 1];
    const int8_t (*cdef_directions)[2];

    assert(w == 4 || w == 8);
    cdef_directions = w == 4 ? cdef_directions4 : cdef_directions8;

    // fill extended input buffer
    int x_start = -2, x_end = w + 2, y_start = -2, y_end = h + 2;
    if (!(edges & HAVE_TOP)) {
        fill(tmp, tmp_stride, w + 4, 2);
        y_start = 0;
    }
    if (!(edges & HAVE_BOTTOM)) {
        fill(tmp + (h + 2) * tmp_stride, tmp_stride, w + 4, 2);
        y_end -= 2;
    }
    if (!(edges & HAVE_LEFT)) {
        fill(tmp + (2 + y_start) * tmp_stride, tmp_stride, 2, y_end - y_start);
        x_start = 0;
    }
    if (!(edges & HAVE_RIGHT)) {
        fill(tmp + (2 + y_start) * tmp_stride + w + 2, tmp_stride,
             2, y_end - y_start);
        x_end -= 2;
    }
    for (int y = y_start; y < 0; y++)
        for (int x = x_start; x < x_end; x++)
            tmp2[y * tmp_stride + x] = top[y & 1][x];
    for (int y = 0; y < y_end; y++)
        for (int x = x_start; x < x_end; x++)
            tmp2[y * tmp_stride + x] = dst[y * PXSTRIDE(dst_stride) + x];

    // run actual filter
    for (int y = 0; y < h; y++) {
        for (int x = 0; x < w; x++) {
            int sum = 0;
            const int px = dst[y * PXSTRIDE(dst_stride) + x];
            int max = px, min = px;
            for (int k = 0; k < 2; k++) {
                const int8_t off1 = cdef_directions[dir][k];
                const int p0 = tmp2[y * tmp_stride + x + off1];
                const int p1 = tmp2[y * tmp_stride + x - off1];
                sum += pri_taps[k] * constrain(p0 - px, pri_strength, damping);
                sum += pri_taps[k] * constrain(p1 - px, pri_strength, damping);
                if (p0 != CDEF_VERY_LARGE) max = imax(p0, max);
                if (p1 != CDEF_VERY_LARGE) max = imax(p1, max);
                min = imin(p0, min);
                min = imin(p1, min);
                const int8_t off2 = cdef_directions[(dir + 2) & 7][k];
                const int s0 = tmp2[y * tmp_stride + x + off2];
                const int s1 = tmp2[y * tmp_stride + x - off2];
                const int8_t off3 = cdef_directions[(dir + 6) & 7][k];
                const int s2 = tmp2[y * tmp_stride + x + off3];
                const int s3 = tmp2[y * tmp_stride + x - off3];
                if (s0 != CDEF_VERY_LARGE) max = imax(s0, max);
                if (s1 != CDEF_VERY_LARGE) max = imax(s1, max);
                if (s2 != CDEF_VERY_LARGE) max = imax(s2, max);
                if (s3 != CDEF_VERY_LARGE) max = imax(s3, max);
                min = imin(s0, min);
                min = imin(s1, min);
                min = imin(s2, min);
                min = imin(s3, min);
                sum += sec_taps[k] * constrain(s0 - px, sec_strength, damping);
                sum += sec_taps[k] * constrain(s1 - px, sec_strength, damping);
                sum += sec_taps[k] * constrain(s2 - px, sec_strength, damping);
                sum += sec_taps[k] * constrain(s3 - px, sec_strength, damping);
            }
            dst[y * PXSTRIDE(dst_stride) + x] =
                iclip(px + ((8 + sum - (sum < 0)) >> 4), min, max);
        }
    }
}

/*
 * </code partially copied from libaom>
 */

#define cdef_fn(w, h) \
static void cdef_filter_block_##w##x##h##_c(pixel *const dst, \
                                            const ptrdiff_t stride, \
                                            /*const*/ pixel *const top[2], \
                                            const int pri_strength, \
                                            const int sec_strength, \
                                            const int dir, \
                                            const int damping, \
                                            const enum CdefEdgeFlags edges) \
{ \
    cdef_filter_block_c(dst, stride, top, w, h, pri_strength, sec_strength, \
                        dir, damping, edges); \
}

cdef_fn(4, 4);
cdef_fn(4, 8);
cdef_fn(8, 8);

/*
 * <code copied from libaom>
 */

/* Detect direction. 0 means 45-degree up-right, 2 is horizontal, and so on.
   The search minimizes the weighted variance along all the lines in a
   particular direction, i.e. the squared error between the input and a
   "predicted" block where each pixel is replaced by the average along a line
   in a particular direction. Since each direction have the same sum(x^2) term,
   that term is never computed. See Section 2, step 2, of:
   http://jmvalin.ca/notes/intra_paint.pdf */
static const uint16_t div_table[] = {
    0, 840, 420, 280, 210, 168, 140, 120, 105
};
static int cdef_find_dir_c(const pixel *img, const ptrdiff_t stride,
                           unsigned *const var)
{
    int i;
    int32_t cost[8] = { 0 };
    int partial[8][15] = { { 0 } };
    int32_t best_cost = 0;
    int best_dir = 0;
    /* Instead of dividing by n between 2 and 8, we multiply by 3*5*7*8/n.
     The output is then 840 times larger, but we don't care for finding
     the max. */
    for (i = 0; i < 8; i++) {
        int j;
        for (j = 0; j < 8; j++) {
            int x;
            /* We subtract 128 here to reduce the maximum range of the squared
             partial sums. */
            x = (img[i * PXSTRIDE(stride) + j] >> (BITDEPTH - 8)) - 128;
            partial[0][i + j] += x;
            partial[1][i + j / 2] += x;
            partial[2][i] += x;
            partial[3][3 + i - j / 2] += x;
            partial[4][7 + i - j] += x;
            partial[5][3 - i / 2 + j] += x;
            partial[6][j] += x;
            partial[7][i / 2 + j] += x;
        }
    }
    for (i = 0; i < 8; i++) {
        cost[2] += partial[2][i] * partial[2][i];
        cost[6] += partial[6][i] * partial[6][i];
    }
    cost[2] *= div_table[8];
    cost[6] *= div_table[8];
    for (i = 0; i < 7; i++) {
        cost[0] += (partial[0][i] * partial[0][i] +
                    partial[0][14 - i] * partial[0][14 - i]) *
                   div_table[i + 1];
        cost[4] += (partial[4][i] * partial[4][i] +
                    partial[4][14 - i] * partial[4][14 - i]) *
                   div_table[i + 1];
    }
    cost[0] += partial[0][7] * partial[0][7] * div_table[8];
    cost[4] += partial[4][7] * partial[4][7] * div_table[8];
    for (i = 1; i < 8; i += 2) {
        int j;
        for (j = 0; j < 4 + 1; j++) {
            cost[i] += partial[i][3 + j] * partial[i][3 + j];
        }
        cost[i] *= div_table[8];
        for (j = 0; j < 4 - 1; j++) {
            cost[i] += (partial[i][j] * partial[i][j] +
                        partial[i][10 - j] * partial[i][10 - j]) *
                       div_table[2 * j + 2];
        }
    }
    for (i = 0; i < 8; i++) {
        if (cost[i] > best_cost) {
            best_cost = cost[i];
            best_dir = i;
        }
    }
    /* Difference between the optimal variance and the variance along the
     orthogonal direction. Again, the sum(x^2) terms cancel out. */
    *var = best_cost - cost[(best_dir + 4) & 7];
    /* We'd normally divide by 840, but dividing by 1024 is close enough
     for what we're going to do with this. */
    *var >>= 10;
    return best_dir;
}

/*
 * </code copied from libaom>
 */

void bitfn(dav1d_cdef_dsp_init)(Dav1dCdefDSPContext *const c) {
    c->dir = cdef_find_dir_c;
    c->fb[0] = cdef_filter_block_8x8_c;
    c->fb[1] = cdef_filter_block_4x8_c;
    c->fb[2] = cdef_filter_block_4x4_c;
}