ref: fb0afbb02fe0fc7f0bc3f8e9c1c67bfa6b8e0419
dir: /python/demos/demo_timestretch_online.py/
#! /usr/bin/env python
# Implementation of the timescale algorithm according to Dan Ellis, *A Phase
# Vocoder in Matlab*. http://www.ee.columbia.edu/~dpwe/resources/matlab/pvoc/
# This file performs both analysis and synthesis in a single pass. See also
# `demo_timestretch.py` for a version following the original implementation.
import sys
from aubio import source, sink, pvoc, cvec
from aubio import unwrap2pi, float_type
import numpy as np
win_s = 512
hop_s = win_s // 8 # 87.5 % overlap
warmup = win_s // hop_s - 1
if len(sys.argv) < 3:
print("Usage: {:s} <source_filename> <output_filename> <rate> [samplerate]".format(sys.argv[0]))
print("""Examples:
# twice faster
{0} track_01.mp3 track_01_faster.wav 2.0
# twice slower
{0} track_02.flac track_02_slower.wav 0.5
# one and a half time faster, resampling first the input to 22050
{0} track_02.flac track_02_slower.wav 1.5 22050""".format(sys.argv[0]))
sys.exit(1)
source_filename = sys.argv[1]
output_filename = sys.argv[2]
rate = float(sys.argv[3])
samplerate = 0 if len(sys.argv) < 5 else int(sys.argv[4])
source_in = source(source_filename, samplerate, hop_s)
samplerate = source_in.samplerate
p = pvoc(win_s, hop_s)
sink_out = sink(output_filename, samplerate)
# excepted phase advance in each bin
phi_advance = np.linspace(0, np.pi * hop_s, win_s / 2 + 1).astype (float_type)
old_grain = cvec(win_s)
new_grain = cvec(win_s)
block_read = 0
interp_read = 0
interp_block = 0
while True:
samples, read = source_in()
cur_grain = p(samples)
if block_read == 1:
phas_acc = old_grain.phas
#print "block_read", block_read
while True and (block_read > 0):
if interp_read >= block_read:
break
#print "`--- interp_block:", interp_block,
#print 'at orig_block', interp_read, '<- from', block_read - 1, block_read,
#print 'old_grain', old_grain, 'cur_grain', cur_grain
# time to compute interp grain
frac = 1. - np.mod(interp_read, 1.0)
# compute interpolated frame
new_grain.norm = frac * old_grain.norm + (1. - frac) * cur_grain.norm
new_grain.phas = phas_acc
# psola
samples = p.rdo(new_grain)
if interp_read > warmup: # skip the first frames to warm up phase vocoder
# write to sink
sink_out(samples, hop_s)
# calculate phase advance
dphas = cur_grain.phas - old_grain.phas - phi_advance
# unwrap angle to [-pi; pi]
dphas = unwrap2pi(dphas)
# cumulate phase, to be used for next frame
phas_acc += phi_advance + dphas
# prepare for next interp block
interp_block += 1
interp_read = interp_block * rate
if interp_read >= block_read:
break
# copy cur_grain to old_grain
old_grain.norm = np.copy(cur_grain.norm)
old_grain.phas = np.copy(cur_grain.phas)
# until end of file
if read < hop_s: break
# increment block counter
block_read += 1
for t in range(warmup + 2): # purge the last frames from the phase vocoder
new_grain.norm[:] = 0
new_grain.phas[:] = 0
samples = p.rdo(new_grain)
sink_out(samples, read if t == warmup + 1 else hop_s)
# just to make sure
source_in.close()
sink_out.close()
format_out = "read {:d} blocks from {:s} at {:d}Hz and rate {:f}, wrote {:d} blocks to {:s}"
print (format_out.format(block_read, source_filename, samplerate, rate,
interp_block, output_filename))