ref: b7fa31645a73fb7ca84ffe5798ec7fb6eb4696fe
dir: /src/pitch/pitchyinfast.c/
/* Copyright (C) 2003-2017 Paul Brossier <piem@aubio.org> This file is part of aubio. aubio is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. aubio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with aubio. If not, see <http://www.gnu.org/licenses/>. */ /* This algorithm was developed by A. de Cheveigné and H. Kawahara and * published in: * * de Cheveigné, A., Kawahara, H. (2002) "YIN, a fundamental frequency * estimator for speech and music", J. Acoust. Soc. Am. 111, 1917-1930. * * see http://recherche.ircam.fr/equipes/pcm/pub/people/cheveign.html */ #include "aubio_priv.h" #include "fvec.h" #include "mathutils.h" #include "cvec.h" #include "spectral/fft.h" #include "pitch/pitchyinfast.h" struct _aubio_pitchyinfast_t { fvec_t *yin; smpl_t tol; uint_t peak_pos; fvec_t *tmpdata; fvec_t *sqdiff; fvec_t *kernel; fvec_t *samples_fft; fvec_t *kernel_fft; aubio_fft_t *fft; }; aubio_pitchyinfast_t * new_aubio_pitchyinfast (uint_t bufsize) { aubio_pitchyinfast_t *o = AUBIO_NEW (aubio_pitchyinfast_t); o->yin = new_fvec (bufsize / 2); o->tmpdata = new_fvec (bufsize); o->sqdiff = new_fvec (bufsize / 2); o->kernel = new_fvec (bufsize); o->samples_fft = new_fvec (bufsize); o->kernel_fft = new_fvec (bufsize); o->fft = new_aubio_fft (bufsize); if (!o->yin || !o->tmpdata || !o->tmpdata || !o->sqdiff || !o->kernel || !o->samples_fft || !o->kernel || !o->fft) { del_aubio_pitchyinfast(o); return NULL; } o->tol = 0.15; o->peak_pos = 0; return o; } void del_aubio_pitchyinfast (aubio_pitchyinfast_t * o) { if (o->yin) del_fvec (o->yin); if (o->tmpdata) del_fvec (o->tmpdata); if (o->sqdiff) del_fvec (o->sqdiff); if (o->kernel) del_fvec (o->kernel); if (o->samples_fft) del_fvec (o->samples_fft); if (o->kernel_fft) del_fvec (o->kernel_fft); if (o->fft) del_aubio_fft (o->fft); AUBIO_FREE (o); } /* all the above in one */ void aubio_pitchyinfast_do (aubio_pitchyinfast_t * o, const fvec_t * input, fvec_t * out) { const smpl_t tol = o->tol; fvec_t* yin = o->yin; const uint_t length = yin->length; uint_t B = o->tmpdata->length; uint_t W = o->yin->length; // B / 2 fvec_t tmp_slice, kernel_ptr; uint_t tau; sint_t period; smpl_t tmp2 = 0.; // compute r_t(0) + r_t+tau(0) { fvec_t *squares = o->tmpdata; fvec_weighted_copy(input, input, squares); #if 0 for (tau = 0; tau < W; tau++) { tmp_slice.data = squares->data + tau; tmp_slice.length = W; o->sqdiff->data[tau] = fvec_sum(&tmp_slice); } #else tmp_slice.data = squares->data; tmp_slice.length = W; o->sqdiff->data[0] = fvec_sum(&tmp_slice); for (tau = 1; tau < W; tau++) { o->sqdiff->data[tau] = o->sqdiff->data[tau-1]; o->sqdiff->data[tau] -= squares->data[tau-1]; o->sqdiff->data[tau] += squares->data[W+tau-1]; } #endif fvec_add(o->sqdiff, o->sqdiff->data[0]); } // compute r_t(tau) = -2.*ifft(fft(samples)*fft(samples[W-1::-1])) { fvec_t *compmul = o->tmpdata; fvec_t *rt_of_tau = o->samples_fft; aubio_fft_do_complex(o->fft, input, o->samples_fft); // build kernel, take a copy of first half of samples tmp_slice.data = input->data; tmp_slice.length = W; kernel_ptr.data = o->kernel->data + 1; kernel_ptr.length = W; fvec_copy(&tmp_slice, &kernel_ptr); // reverse them fvec_rev(&kernel_ptr); // compute fft(kernel) aubio_fft_do_complex(o->fft, o->kernel, o->kernel_fft); // compute complex product compmul->data[0] = o->kernel_fft->data[0] * o->samples_fft->data[0]; for (tau = 1; tau < W; tau++) { compmul->data[tau] = o->kernel_fft->data[tau] * o->samples_fft->data[tau]; compmul->data[tau] -= o->kernel_fft->data[B-tau] * o->samples_fft->data[B-tau]; } compmul->data[W] = o->kernel_fft->data[W] * o->samples_fft->data[W]; for (tau = 1; tau < W; tau++) { compmul->data[B-tau] = o->kernel_fft->data[B-tau] * o->samples_fft->data[tau]; compmul->data[B-tau] += o->kernel_fft->data[tau] * o->samples_fft->data[B-tau]; } // compute inverse fft aubio_fft_rdo_complex(o->fft, compmul, rt_of_tau); // compute square difference r_t(tau) = sqdiff - 2 * r_t_tau[W-1:-1] for (tau = 0; tau < W; tau++) { yin->data[tau] = o->sqdiff->data[tau] - 2. * rt_of_tau->data[tau+W]; } } // now build yin and look for first minimum fvec_zeros(out); yin->data[0] = 1.; for (tau = 1; tau < length; tau++) { tmp2 += yin->data[tau]; if (tmp2 != 0) { yin->data[tau] *= tau / tmp2; } else { yin->data[tau] = 1.; } period = tau - 3; if (tau > 4 && (yin->data[period] < tol) && (yin->data[period] < yin->data[period + 1])) { o->peak_pos = (uint_t)period; out->data[0] = fvec_quadratic_peak_pos (yin, o->peak_pos); return; } } // use global minimum o->peak_pos = (uint_t)fvec_min_elem (yin); out->data[0] = fvec_quadratic_peak_pos (yin, o->peak_pos); } smpl_t aubio_pitchyinfast_get_confidence (aubio_pitchyinfast_t * o) { return 1. - o->yin->data[o->peak_pos]; } uint_t aubio_pitchyinfast_set_tolerance (aubio_pitchyinfast_t * o, smpl_t tol) { o->tol = tol; return 0; } smpl_t aubio_pitchyinfast_get_tolerance (aubio_pitchyinfast_t * o) { return o->tol; }