ref: 03e9422a04d8628fa989f99e604bcd8bc0506353
dir: /python/ext/py-fft.c/
#include "aubio-types.h" static char Py_fft_doc[] = "" "fft(size=1024)\n" "\n" "Compute Fast Fourier Transorms.\n" "\n" "Parameters\n" "----------\n" "size : int\n" " size of the FFT to compute\n" "\n" "Example\n" "-------\n" ">>> x = aubio.fvec(512)\n" ">>> f = aubio.fft(512)\n" ">>> c = f(x); c\n" "aubio cvec of 257 elements\n" ">>> x2 = f.rdo(c); x2.shape\n" "(512,)\n" ""; typedef struct { PyObject_HEAD aubio_fft_t * o; uint_t win_s; // do / rdo input vectors fvec_t vecin; cvec_t cvecin; // do / rdo output results PyObject *doout; PyObject *rdoout; } Py_fft; static PyObject * Py_fft_new (PyTypeObject * type, PyObject * args, PyObject * kwds) { int win_s = 0; Py_fft *self; static char *kwlist[] = { "win_s", NULL }; if (!PyArg_ParseTupleAndKeywords (args, kwds, "|I", kwlist, &win_s)) { return NULL; } self = (Py_fft *) type->tp_alloc (type, 0); if (self == NULL) { return NULL; } self->win_s = Py_default_vector_length; if (win_s > 0) { self->win_s = win_s; } else if (win_s < 0) { PyErr_SetString (PyExc_ValueError, "can not use negative window size"); return NULL; } return (PyObject *) self; } static int Py_fft_init (Py_fft * self, PyObject * args, PyObject * kwds) { self->o = new_aubio_fft (self->win_s); if (self->o == NULL) { // PyErr_Format(PyExc_RuntimeError, ...) was set above by new_ which called // AUBIO_ERR when failing return -1; } self->doout = new_py_cvec(self->win_s); self->rdoout = new_py_fvec(self->win_s); return 0; } static void Py_fft_del (Py_fft *self, PyObject *unused) { Py_XDECREF(self->doout); Py_XDECREF(self->rdoout); if (self->o) { del_aubio_fft(self->o); } Py_TYPE(self)->tp_free((PyObject *) self); } static PyObject * Py_fft_do(Py_fft * self, PyObject * args) { PyObject *input; cvec_t c_out; if (!PyArg_ParseTuple (args, "O", &input)) { return NULL; } if (!PyAubio_ArrayToCFvec(input, &(self->vecin))) { return NULL; } if (self->vecin.length != self->win_s) { PyErr_Format(PyExc_ValueError, "input array has length %d, but fft expects length %d", self->vecin.length, self->win_s); return NULL; } Py_INCREF(self->doout); if (!PyAubio_PyCvecToCCvec(self->doout, &c_out)) { return NULL; } // compute the function aubio_fft_do (self->o, &(self->vecin), &c_out); return self->doout; } static PyMemberDef Py_fft_members[] = { {"win_s", T_INT, offsetof (Py_fft, win_s), READONLY, "size of the window"}, {NULL} }; static PyObject * Py_fft_rdo(Py_fft * self, PyObject * args) { PyObject *input; fvec_t out; if (!PyArg_ParseTuple (args, "O", &input)) { return NULL; } if (!PyAubio_PyCvecToCCvec (input, &(self->cvecin)) ) { return NULL; } if (self->cvecin.length != self->win_s / 2 + 1) { PyErr_Format(PyExc_ValueError, "input cvec has length %d, but fft expects length %d", self->cvecin.length, self->win_s / 2 + 1); return NULL; } Py_INCREF(self->rdoout); if (!PyAubio_ArrayToCFvec(self->rdoout, &out) ) { return NULL; } // compute the function aubio_fft_rdo (self->o, &(self->cvecin), &out); return self->rdoout; } static PyMethodDef Py_fft_methods[] = { {"rdo", (PyCFunction) Py_fft_rdo, METH_VARARGS, "synthesis of spectral grain"}, {NULL} }; PyTypeObject Py_fftType = { PyVarObject_HEAD_INIT (NULL, 0) "aubio.fft", sizeof (Py_fft), 0, (destructor) Py_fft_del, 0, 0, 0, 0, 0, 0, 0, 0, 0, (ternaryfunc)Py_fft_do, 0, 0, 0, 0, Py_TPFLAGS_DEFAULT, Py_fft_doc, 0, 0, 0, 0, 0, 0, Py_fft_methods, Py_fft_members, 0, 0, 0, 0, 0, 0, (initproc) Py_fft_init, 0, Py_fft_new, 0, 0, 0, 0, 0, 0, 0, 0, 0, };