ref: c4109ff50138fc5660db39fd2bd455ca5c58c065
dir: /aac_back_pred.c/
/********************************************************************** This software module was originally developed by and edited by Nokia in the course of development of the MPEG-2 NBC/MPEG-4 Audio standard ISO/IEC 13818-7, 14496-1,2 and 3. This software module is an implementation of a part of one or more MPEG-2 NBC/MPEG-4 Audio tools as specified by the MPEG-2 NBC/MPEG-4 Audio standard. ISO/IEC gives users of the MPEG-2 NBC/MPEG-4 Audio standards free license to this software module or modifications thereof for use in hardware or software products claiming conformance to the MPEG-2 NBC/ MPEG-4 Audio standards. Those intending to use this software module in hardware or software products are advised that this use may infringe existing patents. The original developer of this software module and his/her company, the subsequent editors and their companies, and ISO/IEC have no liability for use of this software module or modifications thereof in an implementation. Copyright is not released for non MPEG-2 NBC/MPEG-4 Audio conforming products. The original developer retains full right to use the code for his/her own purpose, assign or donate the code to a third party and to inhibit third party from using the code for non MPEG-2 NBC/MPEG-4 Audio conforming products. This copyright notice must be included in all copies or derivative works. Copyright (c) 1997. **********************************************************************/ /********************************************************************* * * aac_back_pred.c - AAC backward prediction subroutine * * Authors: * LY Lin Yin, Nokia Research Center * CL Chuck Lueck, TI <lueck@ti.com> * ADD Alberto Duenas, NDS <alberto@ndsuk.com) * JB Jeremy Bennett, NDS <jbennett@ndsuk.com> * * Changes: * 07-jun-97 LY Initial revision. * 14-sep-97 CL Made predicted samples array, sb_samples_pred, static. * Modified line 98 to add these predicted values to * the last spectrum prior to analysis. * 03-dec-97 ADD & JB Added prediction reset. * **********************************************************************/ /********************************************************************** INPUT: act_spec[]: the current frame's spectral components to be encoded. last_spec[]: the previous frame's quantized spectral error components btype: the current frame's window type nsfb: the number of scalefactor bands isfb_width[]: scalefactor bandwidth OUTPUT: act_spec[]: the current frame's spectral error components to be encoded pred_global_flag: global prediction enable/disable flag pred_sbf_glag[]: enable/disable flag for each scalefactor band reset_group: number for the reset group => if -1, then no reset ***********************************************************************/ #include "aac_back_pred.h" static int psy_init_mc[MAX_TIME_CHANNELS]; static double dr_mc[MAX_TIME_CHANNELS][LPC+1][FLEN_LONG/2],e_mc[MAX_TIME_CHANNELS][LPC+1+1][FLEN_LONG/2]; static double K_mc[MAX_TIME_CHANNELS][LPC+1][FLEN_LONG/2], R_mc[MAX_TIME_CHANNELS][LPC+1][FLEN_LONG/2]; static double VAR_mc[MAX_TIME_CHANNELS][LPC+1][FLEN_LONG/2], KOR_mc[MAX_TIME_CHANNELS][LPC+1][FLEN_LONG/2]; static double sb_samples_pred_mc[MAX_TIME_CHANNELS][FLEN_LONG/2]; static int thisLineNeedsResetting_mc[MAX_TIME_CHANNELS][FLEN_LONG/2]; static int reset_count_mc[MAX_TIME_CHANNELS]; void PredInit() { int i; for (i=0;i<MAX_TIME_CHANNELS;i++) { psy_init_mc[i] = 0; reset_count_mc[i] = 0; } } void PredCalcPrediction( double *act_spec, double *last_spec, int btype, int nsfb, int *isfb_width, short *pred_global_flag, int *pred_sfb_flag, int *reset_group , int chanNum) { int i, k, j, cb_long; double num_bit, snr[SBMAX_L]; double energy[FLEN_LONG/2], snr_p[FLEN_LONG/2], temp1, temp2; /* Set pointers for specified channel number */ /* int psy_init; */ int *psy_init; double (*dr)[FLEN_LONG/2],(*e)[FLEN_LONG/2]; double (*K)[FLEN_LONG/2], (*R)[FLEN_LONG/2]; double (*VAR)[FLEN_LONG/2], (*KOR)[FLEN_LONG/2]; double *sb_samples_pred; int *thisLineNeedsResetting; /* int reset_count; */ int *reset_count; /* psy_init = psy_init_mc[chanNum]; */ psy_init = &psy_init_mc[chanNum]; dr = &dr_mc[chanNum][0]; e = &e_mc[chanNum][0]; K = &K_mc[chanNum][0]; R = &R_mc[chanNum][0]; VAR = &VAR_mc[chanNum][0]; KOR = &KOR_mc[chanNum][0]; sb_samples_pred = &sb_samples_pred_mc[chanNum][0]; thisLineNeedsResetting = &thisLineNeedsResetting_mc[chanNum][0]; reset_count = &reset_count_mc[chanNum]; *psy_init = (*psy_init && (btype!=2)); if((*psy_init) == 0) { for (j=0; j<FLEN_LONG/2; j++) { thisLineNeedsResetting[j]=1; } *psy_init = 1; } if (btype==2) { pred_global_flag[0]=0; /* As SHORT WINDOWS reset all the co-efficients, the count * must also be reset. */ *reset_count = ((*reset_count) / RESET_FRAME) * RESET_FRAME; return; } /**************************************************/ /* Compute state using last_spec */ /**************************************************/ for (i=0;i<FLEN_LONG/2;i++) { /* e[0][i]=last_spec[i]; */ e[0][i]=last_spec[i]+sb_samples_pred[i]; for(j=1;j<=LPC;j++) e[j][i] = e[j-1][i]-K[j][i]*R[j-1][i]; for(j=1;j<LPC;j++) dr[j][i] = K[j][i]*e[j-1][i]; for(j=1;j<=LPC;j++) { VAR[j][i] = ALPHA*VAR[j][i]+.5*(R[j-1][i]*R[j-1][i]+e[j-1][i]*e[j-1][i]); KOR[j][i] = ALPHA*KOR[j][i]+R[j-1][i]*e[j-1][i]; } for(j=LPC-1;j>=1;j--) R[j][i] = A*(R[j-1][i]-dr[j][i]); R[0][i] = A*e[0][i]; } /**************************************************/ /* Reset state here if resets were sent */ /**************************************************/ for (i=0;i<FLEN_LONG/2;i++) { if (thisLineNeedsResetting[i]) { for (j = 0; j <= LPC; j++) { K[j][i] = 0.0; dr[j][i] = 0.0; e[j][i] = 0.0; R[j][i] = 0.0; VAR[j][i] = 1.0; KOR[j][i] = 0.0; } } } /**************************************************/ /* Compute predictor coefficients, predicted data */ /**************************************************/ for (i=0;i<FLEN_LONG/2;i++) { for(j=1;j<=LPC;j++) { if(VAR[j][i]>MINVAR) K[j][i] = KOR[j][i]/VAR[j][i]*B; else K[j][i] = 0; } } for (k=0; k<FLEN_LONG/2; k++) { sb_samples_pred[k]=0.0; for (i=1; i<=LPC; i++) sb_samples_pred[k]+=K[i][k]*R[i-1][k]; } /**************************************************/ /* Determine whether to enable/disable prediction */ /**************************************************/ for (k=0; k<FLEN_LONG/2; k++) { energy[k]=act_spec[k]*act_spec[k]; snr_p[k]=(act_spec[k]-sb_samples_pred[k])*(act_spec[k]-sb_samples_pred[k]); } cb_long=0; for (i=0; i<nsfb; i++) { pred_sfb_flag[i]=1; temp1=0.0; temp2=0.0; for (j=cb_long; j<cb_long+isfb_width[i]; j++) { temp1+=energy[j]; temp2+=snr_p[j]; } if(temp2<1.e-20) temp2=1.e-20; if(temp1!=0.0) { snr[i]=-10.*log10((double ) temp2/temp1); } else snr[i]=0.0; if(snr[i]<=0.0) { pred_sfb_flag[i]=0; for (j=cb_long; j<cb_long+isfb_width[i]; j++) sb_samples_pred[j]=0.0; } cb_long+=isfb_width[i]; } /* Disable prediction for bands nsfb through SBMAX_L */ for (i=cb_long;i<FLEN_LONG/2;i++) { sb_samples_pred[i]=0.0; } for (i=nsfb;i<SBMAX_L;i++) { pred_sfb_flag[i]=0; } num_bit=0.0; for (i=0; i<nsfb; i++) if(snr[i]>0.0) num_bit+=snr[i]/6.*isfb_width[i]; pred_global_flag[0]=1; if(num_bit < 50) { pred_global_flag[0]=0; num_bit=0.0; for (j=0; j<FLEN_LONG/2; j++) sb_samples_pred[j]=0.0; } for (j=0; j<FLEN_LONG/2; j++) act_spec[j]-=sb_samples_pred[j]; /* Code segment added by JB */ /* Determine whether a prediction reset is required - if so, then * set reset flag for the appropriate group. */ (*reset_count)++; /* Reset the frame counter */ for (i=0;i<FLEN_LONG/2;i++) { thisLineNeedsResetting[i]=0; } if (*reset_count >= 31 * RESET_FRAME) *reset_count = RESET_FRAME; if (*reset_count % RESET_FRAME == 0) { /* Send a reset in this frame */ *reset_group = *reset_count / 8; for (i = *reset_group - 1; i < FLEN_LONG / 2; i += 30) { thisLineNeedsResetting[i]=1; } } else *reset_group = -1; /* End of code segment */ /* Code segment added by JB */ /* Ensure that prediction data is sent when there is a prediction * reset. */ if (*reset_group != -1 && pred_global_flag[0] == 0) { pred_global_flag[0] = 1; for (i = 0; i < nsfb; i++) pred_sfb_flag[i] = 0; } /* End of code segment */ }