ref: 60fa9e81165a47bf492e0835459e2dedf72df660
dir: /libfaac/util.c/
/* * FAAC - Freeware Advanced Audio Coder * Copyright (C) 2001 Menno Bakker * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * $Id: util.c,v 1.6 2001/02/28 18:39:34 menno Exp $ */ #include <math.h> #include "util.h" /* Returns the sample rate index */ int GetSRIndex(unsigned int sampleRate) { if (92017 <= sampleRate) return 0; if (75132 <= sampleRate) return 1; if (55426 <= sampleRate) return 2; if (46009 <= sampleRate) return 3; if (37566 <= sampleRate) return 4; if (27713 <= sampleRate) return 5; if (23004 <= sampleRate) return 6; if (18783 <= sampleRate) return 7; if (13856 <= sampleRate) return 8; if (11502 <= sampleRate) return 9; if (9391 <= sampleRate) return 10; return 11; } /* Returns the maximum bitrate per channel for that sampling frequency */ unsigned int MaxBitrate(unsigned long sampleRate) { /* * Maximum of 6144 bit for a channel */ return (unsigned int)(6144.0 * (double)sampleRate/1024.0 + .5); } /* Returns the minimum bitrate per channel for that sampling frequency */ unsigned int MinBitrate() { return 8000; } /* Calculate bit_allocation based on PE */ unsigned int BitAllocation(double pe, int short_block) { double pew1; double pew2; double bit_allocation; if (short_block) { pew1 = 0.6; pew2 = 24.0; } else { pew1 = 0.3; pew2 = 6.0; } bit_allocation = pew1 * pe + pew2 * sqrt(pe); bit_allocation = min(max(0.0, bit_allocation), 6144.0); return (unsigned int)(bit_allocation+0.5); } /* Returns the maximum bit reservoir size */ unsigned int MaxBitresSize(unsigned long bitRate, unsigned long sampleRate) { return 6144 - (unsigned int)((double)bitRate/(double)sampleRate*1024.0); }