ref: bdd642b56f958a862fc12a784e6af0b3fdbb7790
dir: /path.c/
#include <u.h> #include <libc.h> #include <draw.h> #include "dat.h" #include "fns.h" /* jump point search with block-based symmetry breaking (JPS(B): 2014, harabor and * grastien), using pairing heaps for priority queues and a bitmap representing the * entire map. * no preprocessing since we'd have to repair the database each time anything moves, * which is a pain. * no pruning of intermediate nodes (JPS(B+P)) as of yet, until other options are * assessed. * the pruning rules adhere to (2012, harabor and grastien) to disallow corner cutting * in diagonal movement, and movement code elsewhere reflects that. * if there is no path to the target, the unit still has to move to the nearest * accessible node. if there is such a node, we first attempt to find a nearer * non-jump point in a cardinal direction, and if successful, the point is added at * the end of the path. unlike plain a∗, we cannot rely on the path backtracked from * the nearest node, since it is no longer guaranteed to be optimal, and will in fact * go all over the place. unless jump points can be connected to all other visible * jump points so as to perform a search on this reduced graph without rediscovering * the map, we're forced to re-do pathfinding to this nearest node. the search should * be much quicker since this new node is accessible. * pathfinding is not limited to an area, so entire map may be scanned, which is too * slow. simple approaches don't seem to work well, it would perhaps be better to * only consider a sub-grid of the map, but the data structures currently used do not * allow it. since the pathfinding algorithm will probably change, the current * implementation disregards the issue. * pathfinding is limited by number of moves (the cost function). this prevents the * search to look at the entire map, but also means potentially non-optimal paths and * more pathfinding when crossing the boundaries. * since units are bigger than the pathfinding grid, the grid is "compressed" when * scanned by using a sliding window the size of the unit, so the rest of the algorithm * still operates on 3x3 neighbor grids, with each bit checking as many nodes as needed * for impassibility. such an approach has apparently not been discussed in regards * to JPS(B), possibly since JPS(B) is a particular optimization of the original * algorithm and this snag may rarely be hit in practice. * map dimensions are assumed to be multiples of 16 tiles. * the code is currently horrendously ugly, though short, and ultimately wrong. * movement should occur at any angle (rather than in 8 directions) and unit sizes * do not have a common denominator higher than 1 pixel. */ enum{ θ∅ = 0, θN, θE, θS, θW, θNE, θSE, θSW, θNW, }; #define SQRT2 1.4142135623730951 static Pairheap *queue; static Node *nearest; void drawnodemap(Rectangle r, Mobj *sel) { u64int *row, v, m; Point p, *pp; Path *path; Node *n; r = Rpt(mulpt(r.min, Node2Tile), mulpt(r.max, Node2Tile)); for(p.y=r.min.y, n=map+p.y*mapwidth+r.min.x; p.y<r.max.y; p.y++){ p.x = r.min.x; row = baddr(p); v = *row++; m = 1ULL << 63 - (p.x & Bmask); for(; p.x<r.max.x; p.x++, n++, m>>=1){ if(m == 0){ v = *row++; m = 1ULL << 63; } if(v & m) compose(mulpt(p, Nodesz), 0xff0000); if(n->closed) compose(mulpt(p, Nodesz), 0x000077); else if(n->open) compose(mulpt(p, Nodesz), 0x007777); } n += mapwidth - (r.max.x - r.min.x); } if(sel != nil){ path = &sel->path; if(path->step == nil) return; for(pp=path->step; pp>=path->moves.p; pp--) compose(mulpt(*pp, Nodesz), 0x00ff00); compose(mulpt(path->target, Nodesz), 0x00ff77); } } static void clearpath(void) { nukequeue(&queue); memset(map, 0, mapwidth * mapheight * sizeof *map); nearest = nil; } int isblocked(Point p, Obj *o) { u64int *row; if(o->f & Fair) return 0; row = bload(p, Pt(o->w, o->h), ZP, 0, 0); return (*row & 1ULL << 63) != 0; } Mobj * unitat(Point p) { Point mp; Rectangle r, mr; Tile *t; Mobjl *ml; Mobj *mo; mp = divpt(p, Node2Tile); r = Rpt(subpt(mp, Pt(4, 4)), mp); for(; mp.y>=r.min.y; mp.y--){ mp.x = r.max.x; t = tilemap + mp.y * tilemapwidth + mp.x; for(; mp.x>=r.min.x; mp.x--, t--) for(ml=t->ml.l; ml!=&t->ml; ml=ml->l){ mo = ml->mo; mr = Rect(mo->x, mo->y, mo->x+mo->o->w, mo->y+mo->o->h); if(ptinrect(p, mr)) return mo; } } return nil; } void markmobj(Mobj *mo, int set) { Point sz; if(mo->o->f & Fair) return; sz = Pt(mo->o->w, mo->o->h); /* if((mo->sub.x & Submask) != 0 && mo->x != ((mo->sub.x>>Pixelshift) + 1) / Nodesz) sz.x++; if((mo->sub.y & Submask) != 0 && mo->y != ((mo->sub.y>>Pixelshift) + 1) / Nodesz) sz.y++; */ sz.x += (mo->sub.x & Submask) != 0 && mo->x != mo->sub.x + (1<<Pixelshift) >> Subshift; sz.y += (mo->sub.y & Submask) != 0 && mo->y != mo->sub.y + (1<<Pixelshift) >> Subshift; bset(mo->Point, sz, set); } double eucdist(Point a, Point b) { int dx, dy; dx = a.x - b.x; dy = a.y - b.y; return sqrt(dx * dx + dy * dy); } double octdist(Point a, Point b) { int dx, dy; dx = abs(a.x - b.x); dy = abs(a.y - b.y); return 1 * (dx + dy) + min(dx, dy) * (SQRT2 - 2 * 1); } /* FIXME: horrendous. use fucking tables you moron */ static Node * jumpeast(int x, int y, int w, int h, Node *b, int *ofs, int left, int rot) { int nbits, steps, stop, end, *u, *v, ss, Δu, Δug, Δug2, Δvg; u64int bs, *row; Node *n; if(rot){ u = &y; v = &x; Δug = b->y - y; Δvg = b->x - x; }else{ u = &x; v = &y; Δug = b->x - x; Δvg = b->y - y; } steps = 0; nbits = 64 - w + 1; ss = left ? -1 : 1; (*v)--; for(;;){ row = bload(Pt(x, y), Pt(w, h), Pt(0, 2), left, rot); bs = row[1]; if(left){ bs |= row[0] << 1 & ~row[0]; bs |= row[2] << 1 & ~row[2]; }else{ bs |= row[0] >> 1 & ~row[0]; bs |= row[2] >> 1 & ~row[2]; } if(bs) break; (*u) += ss * nbits; steps += nbits; } if(left){ stop = lsb(bs); Δu = stop; }else{ stop = msb(bs); Δu = 63 - stop; } end = (row[1] & 1ULL << stop) != 0; (*u) += ss * Δu; (*v)++; steps += Δu; Δug2 = rot ? b->y - y : b->x - x; if(ofs != nil) *ofs = steps; if(end && Δug2 == 0) return nil; if(Δvg == 0 && (Δug == 0 || (Δug < 0) ^ (Δug2 < 0))){ b->Δg = steps - abs(Δug2); b->Δlen = b->Δg; return b; } if(end) return nil; assert(x < mapwidth && y < mapheight); n = map + y * mapwidth + x; n->x = x; n->y = y; n->Δg = steps; n->Δlen = steps; return n; } static Node * jumpdiag(int x, int y, int w, int h, Node *b, int dir) { int left1, ofs1, left2, ofs2, Δx, Δy, steps; Node *n; steps = 0; left1 = left2 = Δx = Δy = 0; switch(dir){ case θNE: left1 = 1; left2 = 0; Δx = 1; Δy = -1; break; case θSW: left1 = 0; left2 = 1; Δx = -1; Δy = 1; break; case θNW: left1 = 1; left2 = 1; Δx = -1; Δy = -1; break; case θSE: left1 = 0; left2 = 0; Δx = 1; Δy = 1; break; } for(;;){ steps++; x += Δx; y += Δy; if(*bload(Pt(x, y), Pt(w, h), ZP, 0, 0) & 1ULL << 63) return nil; if(jumpeast(x, y, w, h, b, &ofs1, left1, 1) != nil || jumpeast(x, y, w, h, b, &ofs2, left2, 0) != nil) break; if(ofs1 == 0 || ofs2 == 0) return nil; } assert(x < mapwidth && y < mapheight); n = map + y * mapwidth + x; n->x = x; n->y = y; n->Δg = steps; n->Δlen = steps * SQRT2; return n; } static Node * jump(int x, int y, int w, int h, Node *b, int dir) { Node *n; switch(dir){ case θE: n = jumpeast(x, y, w, h, b, nil, 0, 0); break; case θW: n = jumpeast(x, y, w, h, b, nil, 1, 0); break; case θS: n = jumpeast(x, y, w, h, b, nil, 0, 1); break; case θN: n = jumpeast(x, y, w, h, b, nil, 1, 1); break; default: n = jumpdiag(x, y, w, h, b, dir); break; } return n; } /* 2012, harabor and grastien: disabling corner cutting implies that only moves in * a cardinal direction may produce forced neighbors */ static int forced(int n, int dir) { int m; m = 0; switch(dir){ case θN: if((n & (1<<8 | 1<<5)) == 1<<8) m |= 1<<5 | 1<<2; if((n & (1<<6 | 1<<3)) == 1<<6) m |= 1<<3 | 1<<0; break; case θE: if((n & (1<<2 | 1<<1)) == 1<<2) m |= 1<<1 | 1<<0; if((n & (1<<8 | 1<<7)) == 1<<8) m |= 1<<7 | 1<<6; break; case θS: if((n & (1<<2 | 1<<5)) == 1<<2) m |= 1<<5 | 1<<8; if((n & (1<<0 | 1<<3)) == 1<<0) m |= 1<<3 | 1<<6; break; case θW: if((n & (1<<0 | 1<<1)) == 1<<0) m |= 1<<1 | 1<<2; if((n & (1<<6 | 1<<7)) == 1<<6) m |= 1<<7 | 1<<8; break; } return m; } static int natural(int n, int dir) { int m; switch(dir){ /* disallow corner coasting on the very first move */ default: if((n & (1<<1 | 1<<3)) != 0) n |= 1<<0; if((n & (1<<7 | 1<<3)) != 0) n |= 1<<6; if((n & (1<<7 | 1<<5)) != 0) n |= 1<<8; if((n & (1<<1 | 1<<5)) != 0) n |= 1<<2; return n; case θN: return n | ~(1<<1); case θE: return n | ~(1<<3); case θS: return n | ~(1<<7); case θW: return n | ~(1<<5); case θNE: m = 1<<1 | 1<<3; return (n & m) == 0 ? n | ~(1<<0 | m) : n | 1<<0; case θSE: m = 1<<7 | 1<<3; return (n & m) == 0 ? n | ~(1<<6 | m) : n | 1<<6; case θSW: m = 1<<7 | 1<<5; return (n & m) == 0 ? n | ~(1<<8 | m) : n | 1<<8; case θNW: m = 1<<1 | 1<<5; return (n & m) == 0 ? n | ~(1<<2 | m) : n | 1<<2; } } static int prune(int n, int dir) { return natural(n, dir) & ~forced(n, dir); } static int neighbors(int x, int y, int w, int h) { u64int *row; row = bload(Pt(x-1,y-1), Pt(w,h), Pt(2,2), 1, 0); return (row[2] & 7) << 6 | (row[1] & 7) << 3 | row[0] & 7; } static Node ** jpssuccessors(Node *n, Size sz, Node *b) { static Node *dir[8+1]; static dtab[2*(nelem(dir)-1)]={ 1<<1, θN, 1<<3, θE, 1<<7, θS, 1<<5, θW, 1<<0, θNE, 1<<6, θSE, 1<<8, θSW, 1<<2, θNW }; int i, ns; Node *s, **p; ns = neighbors(n->x, n->y, sz.w, sz.h); ns = prune(ns, n->dir); memset(dir, 0, sizeof dir); for(i=0, p=dir; i<nelem(dtab); i+=2){ if(ns & dtab[i]) continue; if((s = jump(n->x, n->y, sz.w, sz.h, b, dtab[i+1])) != nil){ s->dir = dtab[i+1]; *p++ = s; } } return dir; } static Node ** successors(Node *n, Size, Node *) { static Node *dir[8+1]; static dtab[2*(nelem(dir)-1)]={ -1,-1, 0,-1, 1,-1, -1,0, 1,0, -1,1, 0,1, 1,1, }; int i; Node *s, **p; memset(dir, 0, sizeof dir); for(i=0, p=dir; i<nelem(dtab); i+=2){ s = n + dtab[i+1] * mapwidth + dtab[i]; if(s >= map && s < map + mapwidth * mapheight){ s->Point = addpt(n->Point, Pt(dtab[i], dtab[i+1])); s->Δg = 1; s->Δlen = dtab[i] != 0 && dtab[i+1] != 0 ? SQRT2 : 1; *p++ = s; } } return dir; } static Node * a∗(Mobj *mo, Node *a, Node *b) { double g, Δg; Node *x, *n, **dp; Pairheap *pn; if(a == b){ werrstr("a∗: moving in place"); return nil; } x = a; a->h = octdist(a->Point, b->Point); pushqueue(a, &queue); while((pn = popqueue(&queue)) != nil){ x = pn->n; free(pn); if(x == b) break; x->closed = 1; dp = successors(x, mo->o->Size, b); for(n=*dp++; n!=nil; n=*dp++){ if(n->closed) continue; if(isblocked(n->Point, mo->o)) continue; g = x->g + n->Δg; Δg = n->g - g; if(!n->open){ n->from = x; n->open = 1; n->step = x->step + 1; n->h = octdist(n->Point, b->Point); n->len = x->len + n->Δlen; n->g = g; pushqueue(n, &queue); }else if(Δg > 0){ n->from = x; n->step = x->step + 1; n->len = x->len + n->Δlen; n->g -= Δg; decreasekey(n->p, Δg, &queue); assert(n->g >= 0); } if(nearest == nil || n->h < nearest->h) nearest = n; } } return x; } static void directpath(Mobj *mo, Node *a, Node *g) { Path *pp; pp = &mo->path; pp->dist = eucdist(a->Point, g->Point); clearvec(&pp->moves); pushvec(&pp->moves, &g->Point); pp->step = (Point *)pp->moves.p + pp->moves.n - 1; } static void backtrack(Mobj *mo, Node *n, Node *a) { Path *pp; pp = &mo->path; assert(n != a && n->step > 0); pp->dist = n->len; clearvec(&pp->moves); for(; n!=a; n=n->from) pushvec(&pp->moves, &n->Point); pp->step = (Point *)pp->moves.p + pp->moves.n - 1; } int isnextto(Mobj *mo, Mobj *tgt) { Rectangle r1, r2; if(tgt == nil) return 0; r1.min = mo->Point; r1.max = addpt(r1.min, Pt(mo->o->w, mo->o->h)); r2.min = tgt->Point; r2.max = addpt(r2.min, Pt(tgt->o->w, tgt->o->h)); return rectXrect(insetrect(r1, -1), r2); } /* FIXME: completely broken */ static Node * nearestnonjump(Mobj *mo, Node *n, Node *b) { static Point dirtab[] = { {0,-1}, {1,0}, {0,1}, {-1,0}, }; int i; Point p; Node *m, *min; min = n; for(i=0; i<nelem(dirtab); i++){ p = addpt(n->Point, dirtab[i]); while(!isblocked(p, mo->o)){ m = map + p.y * mapwidth + p.x; m->Point = p; m->h = octdist(m->Point, b->Point); if(min->h < m->h) break; min = m; p = addpt(p, dirtab[i]); } } if(min != n){ min->from = n; min->open = 1; min->step = n->step + 1; } return min; } /* FIXME: completely broken */ void setgoal(Mobj *mo, Point *gp, Mobj *block) { int e; double Δ, Δ´; Point p, g; Node *n1, *n2, *gn; if(mo->o->f & Fair || block == nil){ mo->path.blocked = 0; return; } g = *gp; mo->path.blocked = 1; dprint("%M setgoal: moving goal %P in block %#p ", mo, g, block); gn = map + g.y * mapwidth + g.x; gn->Point = g; Δ = 0x7ffffff; p = block->Point; n1 = map + p.y * mapwidth + p.x; n2 = n1 + (block->o->h - 1) * mapwidth; for(e=p.x+block->o->w; p.x<e; p.x++, n1++, n2++){ n1->Point = p; Δ´ = octdist(gn->Point, n1->Point); if(Δ´ < Δ){ Δ = Δ´; g = p; } n2->Point = addpt(p, Pt(0, block->o->h-1)); Δ´ = octdist(gn->Point, n2->Point); if(Δ´ < Δ){ Δ = Δ´; g = n2->Point; } } p = addpt(block->Point, Pt(0,1)); n1 = map + p.y * mapwidth + p.x; n2 = n1 + block->o->w - 1; for(e=p.y+block->o->h-2; p.y<e; p.y++, n1+=mapwidth, n2+=mapwidth){ n1->Point = p; Δ´ = octdist(gn->Point, n1->Point); if(Δ´ < Δ){ Δ = Δ´; g = p; } n2->Point = addpt(p, Pt(block->o->w-1, 0)); Δ´ = octdist(gn->Point, n2->Point); if(Δ´ < Δ){ Δ = Δ´; g = n2->Point; } } dprint("to %P\n", g); *gp = g; } int findpath(Mobj *mo, Point p) { Node *a, *b, *n; if(eqpt(p, mo->Point)){ werrstr("not moving to itself"); return -1; } clearpath(); a = map + mo->y * mapwidth + mo->x; a->Point = mo->Point; b = map + p.y * mapwidth + p.x; b->Point = p; dprint("%M findpath from %P to %P dist %f\n", mo, a->Point, b->Point, octdist(a->Point, b->Point)); if(mo->o->f & Fair){ directpath(mo, a, b); return 0; } markmobj(mo, 0); n = a∗(mo, a, b); if(n != b){ dprint("%M findpath: goal unreachable\n", mo); if((n = nearest) == a || n == nil || a->h < n->h){ werrstr("a∗: can't move"); markmobj(mo, 1); return -1; } dprint("%M findpath: nearest is %#p %P dist %f\n", mo, n, n->Point, n->h); n = nearest; if(n == a){ werrstr("a∗: really can't move"); markmobj(mo, 1); return -1; } /* b = nearestnonjump(mo, n, b); if(b == a){ werrstr("a∗: really can't move"); markmobj(mo, 1); return -1; } clearpath(); a->Point = mo->Point; b->Point = Pt((b - map) % mapwidth, (b - map) / mapwidth); if((n = a∗(mo, a, b)) != b){ werrstr("bug: failed to find path to nearest non-jump point"); return -1; } */ } dprint("%M found %#p at %P dist %f\n", mo, n, n->Point, n->h); markmobj(mo, 1); backtrack(mo, n, a); return 0; }