ref: 0f0456b7b1ace815588878e613562edb97e73321
dir: /path.c/
#include <u.h> #include <libc.h> #include <draw.h> #include "dat.h" #include "fns.h" /* jump point search with block-based symmetry breaking (JPS(B): 2014, harabor and * grastien), using pairing heaps for priority queues and a bitmap representing the * entire map. * no preprocessing since we'd have to repair the database each time anything moves, * which is a pain. * no pruning of intermediate nodes (JPS(B+P)) as of yet, until other options are * assessed. * the pruning rules adhere to (2012, harabor and grastien) to disallow corner cutting * in diagonal movement, and movement code elsewhere reflects that. * if there is no path to the target, the unit still has to move to the nearest * accessible node. if there is such a node, we first attempt to find a nearer * non-jump point in a cardinal direction, and if successful, the point is added at * the end of the path. unlike plain a∗, we cannot rely on the path backtracked from * the nearest node, since it is no longer guaranteed to be optimal, and will in fact * go all over the place. unless jump points can be connected to all other visible * jump points so as to perform a search on this reduced graph without rediscovering * the map, we're forced to re-do pathfinding to this nearest node. the search should * be much quicker since this new node is accessible. * pathfinding is not limited to an area, so entire map may be scanned, which is too * slow. simple approaches don't seem to work well, it would perhaps be better to * only consider a sub-grid of the map, but the data structures currently used do not * allow it. since the pathfinding algorithm will probably change, the current * implementation disregards the issue. * pathfinding is limited by number of moves (the cost function). this prevents the * search to look at the entire map, but also means potentially non-optimal paths and * more pathfinding when crossing the boundaries. * since units are bigger than the pathfinding grid, the grid is "compressed" when * scanned by using a sliding window the size of the unit, so the rest of the algorithm * still operates on 3x3 neighbor grids, with each bit checking as many nodes as needed * for impassibility. such an approach has apparently not been discussed in regards * to JPS(B), possibly since JPS(B) is a particular optimization of the original * algorithm and this snag may rarely be hit in practice. * map dimensions are assumed to be multiples of 16 tiles. * the code is currently horrendously ugly, though short, and ultimately wrong. * movement should occur at any angle (rather than in 8 directions) and unit sizes * do not have a common denominator higher than 1 pixel. */ enum{ θ∅ = 0, θN, θE, θS, θW, θNE, θSE, θSW, θNW, }; #define SQRT2 1.4142135623730951 static Pairheap *queue; static Node *nearest; static void clearpath(void) { nukequeue(&queue); memset(nodemap, 0, nodemapwidth * nodemapheight * sizeof *nodemap); nearest = nil; } int isblocked(int x, int y, Obj *o) { u64int *row; if(o->f & Fair) return 0; row = bload(x, y, o->w, o->h, 0, 0, 0, 0); return (*row & 1ULL << 63) != 0; } Mobj * unitat(int px, int py) { int x, y; Rectangle r, mr; Map *m; Mobjl *ml; Mobj *mo; x = px / Node2Tile; y = py / Node2Tile; r = Rect(x-4, y-4, x, y); for(; y>=r.min.y; y--) for(x=r.max.x, m=map+y*mapwidth+x; x>=r.min.x; x--) for(ml=m->ml.l; ml!=&m->ml; ml=ml->l){ mo = ml->mo; mr.min.x = mo->x; mr.min.y = mo->y; mr.max.x = mr.min.x + mo->o->w; mr.max.y = mr.min.y + mo->o->h; if(px >= mo->x && px <= mo->x + mo->o->w && py >= mo->y && py <= mo->y + mo->o->h) return mo; } return nil; } void markmobj(Mobj *mo, int set) { int w, h; if(mo->o->f & Fair) return; w = mo->o->w; if((mo->subpx & Subpxmask) != 0 && mo->x != (mo->px + 1) / Nodewidth) w++; h = mo->o->h; if((mo->subpy & Subpxmask) != 0 && mo->y != (mo->py + 1) / Nodewidth) h++; bset(mo->x, mo->y, w, h, set); } static double eucdist(Node *a, Node *b) { double dx, dy; dx = a->x - b->x; dy = a->y - b->y; return sqrt(dx * dx + dy * dy); } static double octdist(Node *a, Node *b) { int dx, dy; dx = abs(a->x - b->x); dy = abs(a->y - b->y); return 1 * (dx + dy) + (SQRT2 - 2 * 1) * min(dx, dy); } /* FIXME: horrendous. use fucking tables you moron */ static Node * jumpeast(int x, int y, int w, int h, Node *b, int *ofs, int left, int rot) { int nbits, steps, stop, end, *u, *v, ss, Δu, Δug, Δug2, Δvg; u64int bs, *row; Node *n; if(rot){ u = &y; v = &x; Δug = b->y - y; Δvg = b->x - x; }else{ u = &x; v = &y; Δug = b->x - x; Δvg = b->y - y; } steps = 0; nbits = 64 - w + 1; ss = left ? -1 : 1; (*v)--; for(;;){ row = bload(x, y, w, h, 0, 2, left, rot); bs = row[1]; if(left){ bs |= row[0] << 1 & ~row[0]; bs |= row[2] << 1 & ~row[2]; }else{ bs |= row[0] >> 1 & ~row[0]; bs |= row[2] >> 1 & ~row[2]; } if(bs) break; (*u) += ss * nbits; steps += nbits; } if(left){ stop = lsb(bs); Δu = stop; }else{ stop = msb(bs); Δu = 63 - stop; } end = (row[1] & 1ULL << stop) != 0; (*u) += ss * Δu; (*v)++; steps += Δu; Δug2 = rot ? b->y - y : b->x - x; if(ofs != nil) *ofs = steps; if(end && Δug2 == 0) return nil; if(Δvg == 0 && (Δug == 0 || (Δug < 0) ^ (Δug2 < 0))){ b->Δg = steps - abs(Δug2); b->Δlen = b->Δg; return b; } if(end) return nil; assert(x < nodemapwidth && y < nodemapheight); n = nodemap + y * nodemapwidth + x; n->x = x; n->y = y; n->Δg = steps; n->Δlen = steps; return n; } static Node * jumpdiag(int x, int y, int w, int h, Node *b, int dir) { int left1, ofs1, left2, ofs2, Δx, Δy, steps; Node *n; steps = 0; left1 = left2 = Δx = Δy = 0; switch(dir){ case θNE: left1 = 1; left2 = 0; Δx = 1; Δy = -1; break; case θSW: left1 = 0; left2 = 1; Δx = -1; Δy = 1; break; case θNW: left1 = 1; left2 = 1; Δx = -1; Δy = -1; break; case θSE: left1 = 0; left2 = 0; Δx = 1; Δy = 1; break; } for(;;){ steps++; x += Δx; y += Δy; if(*bload(x, y, w, h, 0, 0, 0, 0) & 1ULL << 63) return nil; if(jumpeast(x, y, w, h, b, &ofs1, left1, 1) != nil || jumpeast(x, y, w, h, b, &ofs2, left2, 0) != nil) break; if(ofs1 == 0 || ofs2 == 0) return nil; } assert(x < nodemapwidth && y < nodemapheight); n = nodemap + y * nodemapwidth + x; n->x = x; n->y = y; n->Δg = steps; n->Δlen = steps * SQRT2; return n; } static Node * jump(int x, int y, int w, int h, Node *b, int dir) { Node *n; switch(dir){ case θE: n = jumpeast(x, y, w, h, b, nil, 0, 0); break; case θW: n = jumpeast(x, y, w, h, b, nil, 1, 0); break; case θS: n = jumpeast(x, y, w, h, b, nil, 0, 1); break; case θN: n = jumpeast(x, y, w, h, b, nil, 1, 1); break; default: n = jumpdiag(x, y, w, h, b, dir); break; } return n; } /* 2012, harabor and grastien: disabling corner cutting implies that only moves in * a cardinal direction may produce forced neighbors */ static int forced(int n, int dir) { int m; m = 0; switch(dir){ case θN: if((n & (1<<8 | 1<<5)) == 1<<8) m |= 1<<5 | 1<<2; if((n & (1<<6 | 1<<3)) == 1<<6) m |= 1<<3 | 1<<0; break; case θE: if((n & (1<<2 | 1<<1)) == 1<<2) m |= 1<<1 | 1<<0; if((n & (1<<8 | 1<<7)) == 1<<8) m |= 1<<7 | 1<<6; break; case θS: if((n & (1<<2 | 1<<5)) == 1<<2) m |= 1<<5 | 1<<8; if((n & (1<<0 | 1<<3)) == 1<<0) m |= 1<<3 | 1<<6; break; case θW: if((n & (1<<0 | 1<<1)) == 1<<0) m |= 1<<1 | 1<<2; if((n & (1<<6 | 1<<7)) == 1<<6) m |= 1<<7 | 1<<8; break; } return m; } static int natural(int n, int dir) { int m; switch(dir){ /* disallow corner coasting on the very first move */ default: if((n & (1<<1 | 1<<3)) != 0) n |= 1<<0; if((n & (1<<7 | 1<<3)) != 0) n |= 1<<6; if((n & (1<<7 | 1<<5)) != 0) n |= 1<<8; if((n & (1<<1 | 1<<5)) != 0) n |= 1<<2; return n; case θN: return n | ~(1<<1); case θE: return n | ~(1<<3); case θS: return n | ~(1<<7); case θW: return n | ~(1<<5); case θNE: m = 1<<1 | 1<<3; return (n & m) == 0 ? n | ~(1<<0 | m) : n | 1<<0; case θSE: m = 1<<7 | 1<<3; return (n & m) == 0 ? n | ~(1<<6 | m) : n | 1<<6; case θSW: m = 1<<7 | 1<<5; return (n & m) == 0 ? n | ~(1<<8 | m) : n | 1<<8; case θNW: m = 1<<1 | 1<<5; return (n & m) == 0 ? n | ~(1<<2 | m) : n | 1<<2; } } static int prune(int n, int dir) { return natural(n, dir) & ~forced(n, dir); } static int neighbors(int x, int y, int w, int h) { u64int *row; row = bload(x-1, y-1, w, h, 2, 2, 1, 0); return (row[2] & 7) << 6 | (row[1] & 7) << 3 | row[0] & 7; } static Node ** successors(Node *n, int w, int h, Node *b) { static Node *dir[8+1]; static dtab[2*(nelem(dir)-1)]={ 1<<1, θN, 1<<3, θE, 1<<7, θS, 1<<5, θW, 1<<0, θNE, 1<<6, θSE, 1<<8, θSW, 1<<2, θNW }; int i, ns; Node *s, **p; ns = neighbors(n->x, n->y, w, h); ns = prune(ns, n->dir); memset(dir, 0, sizeof dir); for(i=0, p=dir; i<nelem(dtab); i+=2){ if(ns & dtab[i]) continue; if((s = jump(n->x, n->y, w, h, b, dtab[i+1])) != nil){ s->dir = dtab[i+1]; *p++ = s; } } return dir; } static Node * a∗(Node *a, Node *b, Mobj *mo) { double g, Δg; Node *x, *n, **dp; Pairheap *pn; if(a == b){ werrstr("a∗: moving in place"); return nil; } x = a; a->h = octdist(a, b); pushqueue(a, &queue); while((pn = popqueue(&queue)) != nil){ x = pn->n; free(pn); if(x == b) break; x->closed = 1; dp = successors(x, mo->o->w, mo->o->h, b); for(n=*dp++; n!=nil; n=*dp++){ if(n->closed) continue; g = x->g + n->Δg; Δg = n->g - g; if(!n->open){ n->from = x; n->g = g; n->h = octdist(n, b); n->len = x->len + n->Δlen; n->open = 1; n->step = x->step + 1; pushqueue(n, &queue); }else if(Δg > 0){ n->from = x; n->step = x->step + 1; n->len = x->len + n->Δlen; n->g -= Δg; decreasekey(n->p, Δg, &queue); } if(nearest == nil || n->h < nearest->h) nearest = n; } } return x; } static void resizepathbuf(Mobj *mo, int nstep) { if(mo->npathbuf >= nstep) return; nstep = nstep + 16; mo->paths = erealloc(mo->paths, nstep * sizeof mo->paths, mo->npathbuf * sizeof mo->paths); mo->npathbuf = nstep; } static void directpath(Node *a, Node *g, Mobj *mo) { resizepathbuf(mo, 1); mo->pathlen = eucdist(a, g); mo->pathe = mo->paths + 1; mo->paths->x = g->x * Nodewidth; mo->paths->y = g->y * Nodewidth; } static void backtrack(Node *n, Node *a, Mobj *mo) { int x, y; Point *p; assert(n != a && n->step > 0); resizepathbuf(mo, n->step); mo->pathlen = n->len; p = mo->paths + n->step; mo->pathe = p--; for(; n!=a; n=n->from){ x = n->x * Nodewidth; y = n->y * Nodeheight; *p-- = (Point){x, y}; } assert(p == mo->paths - 1); } static Node * nearestnonjump(Node *n, Node *b, Mobj *mo) { static Point dirtab[] = { {0,-1}, {1,0}, {0,1}, {-1,0}, }; int i, x, y; Node *m, *min; min = n; for(i=0; i<nelem(dirtab); i++){ x = n->x + dirtab[i].x; y = n->y + dirtab[i].y; while(!isblocked(x, y, mo->o)){ m = nodemap + y * nodemapwidth + x; m->x = x; m->y = y; m->h = octdist(m, b); if(min->h < m->h) break; min = m; x += dirtab[i].x; y += dirtab[i].y; } } if(min != n){ min->from = n; min->open = 1; min->step = n->step + 1; } return min; } void setgoal(Point *p, Mobj *mo, Mobj *block) { int x, y, e; double Δ, Δ´; Node *n1, *n2, *pm; if(mo->o->f & Fair || block == nil){ mo->goalblocked = 0; return; } mo->goalblocked = 1; dprint("setgoal: moving goal %d,%d in block %#p ", p->x, p->y, block); pm = nodemap + p->y * nodemapwidth + p->x; pm->x = p->x; pm->y = p->y; Δ = 0x7ffffff; x = block->x; y = block->y; n1 = nodemap + y * nodemapwidth + x; n2 = n1 + (block->o->h - 1) * nodemapwidth; for(e=x+block->o->w; x<e; x++, n1++, n2++){ n1->x = x; n1->y = y; Δ´ = octdist(pm, n1); if(Δ´ < Δ){ Δ = Δ´; p->x = x; p->y = y; } n2->x = x; n2->y = y + block->o->h - 1; Δ´ = octdist(pm, n2); if(Δ´ < Δ){ Δ = Δ´; p->x = x; p->y = y + block->o->h - 1; } } x = block->x; y = block->y + 1; n1 = nodemap + y * nodemapwidth + x; n2 = n1 + block->o->w - 1; for(e=y+block->o->h-2; y<e; y++, n1+=nodemapwidth, n2+=nodemapwidth){ n1->x = x; n1->y = y; Δ´ = octdist(pm, n1); if(Δ´ < Δ){ Δ = Δ´; p->x = x; p->y = y; } n2->x = x + block->o->w - 1; n2->y = y; Δ´ = octdist(pm, n2); if(Δ´ < Δ){ Δ = Δ´; p->x = x + block->o->w - 1; p->y = y; } } dprint("to %d,%d\n", p->x, p->y); } int findpath(Point p, Mobj *mo) { Node *a, *b, *n; dprint("findpath %d,%d → %d,%d\n", mo->x, mo->y, p.x, p.y); clearpath(); a = nodemap + mo->y * nodemapwidth + mo->x; a->x = mo->x; a->y = mo->y; b = nodemap + p.y * nodemapwidth + p.x; b->x = p.x; b->y = p.y; if(mo->o->f & Fair){ directpath(a, b, mo); return 0; } markmobj(mo, 0); n = a∗(a, b, mo); if(n != b){ dprint("findpath: goal unreachable\n"); if((n = nearest) == a || n == nil || a->h < n->h){ werrstr("a∗: can't move"); markmobj(mo, 1); return -1; } dprint("nearest: %#p %d,%d dist %f\n", n, n->x, n->y, n->h); b = nearestnonjump(n, b, mo); if(b == a){ werrstr("a∗: really can't move"); markmobj(mo, 1); return -1; } clearpath(); a->x = mo->x; a->y = mo->y; b->x = (b - nodemap) % nodemapwidth; b->y = (b - nodemap) / nodemapwidth; if((n = a∗(a, b, mo)) == nil) sysfatal("findpath: phase error"); } markmobj(mo, 1); backtrack(n, a, mo); return 0; }