ref: f21a753a80c4034db22926835af88117e021eff0
dir: /common/mathlib.c/
/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Foobar; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ // mathlib.c -- math primitives #include "cmdlib.h" #include "mathlib.h" #ifdef _WIN32 //Improve floating-point consistency. //without this option weird floating point issues occur #pragma optimize( "p", on ) #endif vec3_t vec3_origin = {0,0,0}; /* ** NormalToLatLong ** ** We use two byte encoded normals in some space critical applications. ** Lat = 0 at (1,0,0) to 360 (-1,0,0), encoded in 8-bit sine table format ** Lng = 0 at (0,0,1) to 180 (0,0,-1), encoded in 8-bit sine table format ** */ void NormalToLatLong( const vec3_t normal, byte bytes[2] ) { // check for singularities if ( normal[0] == 0 && normal[1] == 0 ) { if ( normal[2] > 0 ) { bytes[0] = 0; bytes[1] = 0; // lat = 0, long = 0 } else { bytes[0] = 128; bytes[1] = 0; // lat = 0, long = 128 } } else { int a, b; a = RAD2DEG( atan2( normal[1], normal[0] ) ) * (255.0f / 360.0f ); a &= 0xff; b = RAD2DEG( acos( normal[2] ) ) * ( 255.0f / 360.0f ); b &= 0xff; bytes[0] = b; // longitude bytes[1] = a; // lattitude } } /* ===================== PlaneFromPoints Returns false if the triangle is degenrate. The normal will point out of the clock for clockwise ordered points ===================== */ qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) { vec3_t d1, d2; VectorSubtract( b, a, d1 ); VectorSubtract( c, a, d2 ); CrossProduct( d2, d1, plane ); if ( VectorNormalize( plane, plane ) == 0 ) { return qfalse; } plane[3] = DotProduct( a, plane ); return qtrue; } /* ================ MakeNormalVectors Given a normalized forward vector, create two other perpendicular vectors ================ */ void MakeNormalVectors (vec3_t forward, vec3_t right, vec3_t up) { float d; // this rotate and negate guarantees a vector // not colinear with the original right[1] = -forward[0]; right[2] = forward[1]; right[0] = forward[2]; d = DotProduct (right, forward); VectorMA (right, -d, forward, right); VectorNormalize (right, right); CrossProduct (right, forward, up); } void Vec10Copy( vec_t *in, vec_t *out ) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; out[3] = in[3]; out[4] = in[4]; out[5] = in[5]; out[6] = in[6]; out[7] = in[7]; out[8] = in[8]; out[9] = in[9]; } void VectorRotate3x3( vec3_t v, float r[3][3], vec3_t d ) { d[0] = v[0] * r[0][0] + v[1] * r[1][0] + v[2] * r[2][0]; d[1] = v[0] * r[0][1] + v[1] * r[1][1] + v[2] * r[2][1]; d[2] = v[0] * r[0][2] + v[1] * r[1][2] + v[2] * r[2][2]; } double VectorLength( const vec3_t v ) { int i; double length; length = 0; for (i=0 ; i< 3 ; i++) length += v[i]*v[i]; length = sqrt (length); // FIXME return length; } qboolean VectorCompare( const vec3_t v1, const vec3_t v2 ) { int i; for (i=0 ; i<3 ; i++) if (fabs(v1[i]-v2[i]) > EQUAL_EPSILON) return qfalse; return qtrue; } vec_t Q_rint (vec_t in) { return floor (in + 0.5); } void VectorMA( const vec3_t va, double scale, const vec3_t vb, vec3_t vc ) { vc[0] = va[0] + scale*vb[0]; vc[1] = va[1] + scale*vb[1]; vc[2] = va[2] + scale*vb[2]; } void CrossProduct( const vec3_t v1, const vec3_t v2, vec3_t cross ) { cross[0] = v1[1]*v2[2] - v1[2]*v2[1]; cross[1] = v1[2]*v2[0] - v1[0]*v2[2]; cross[2] = v1[0]*v2[1] - v1[1]*v2[0]; } vec_t _DotProduct (vec3_t v1, vec3_t v2) { return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; } void _VectorSubtract (vec3_t va, vec3_t vb, vec3_t out) { out[0] = va[0]-vb[0]; out[1] = va[1]-vb[1]; out[2] = va[2]-vb[2]; } void _VectorAdd (vec3_t va, vec3_t vb, vec3_t out) { out[0] = va[0]+vb[0]; out[1] = va[1]+vb[1]; out[2] = va[2]+vb[2]; } void _VectorCopy (vec3_t in, vec3_t out) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } void _VectorScale (vec3_t v, vec_t scale, vec3_t out) { out[0] = v[0] * scale; out[1] = v[1] * scale; out[2] = v[2] * scale; } vec_t VectorNormalize( const vec3_t in, vec3_t out ) { vec_t length, ilength; length = sqrt (in[0]*in[0] + in[1]*in[1] + in[2]*in[2]); if (length == 0) { VectorClear (out); return 0; } ilength = 1.0/length; out[0] = in[0]*ilength; out[1] = in[1]*ilength; out[2] = in[2]*ilength; return length; } vec_t ColorNormalize( const vec3_t in, vec3_t out ) { float max, scale; max = in[0]; if (in[1] > max) max = in[1]; if (in[2] > max) max = in[2]; if (max == 0) { out[0] = out[1] = out[2] = 1.0; return 0; } scale = 1.0 / max; VectorScale (in, scale, out); return max; } void VectorInverse (vec3_t v) { v[0] = -v[0]; v[1] = -v[1]; v[2] = -v[2]; } void ClearBounds (vec3_t mins, vec3_t maxs) { mins[0] = mins[1] = mins[2] = 99999; maxs[0] = maxs[1] = maxs[2] = -99999; } void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ) { int i; vec_t val; for (i=0 ; i<3 ; i++) { val = v[i]; if (val < mins[i]) mins[i] = val; if (val > maxs[i]) maxs[i] = val; } } /* ================= PlaneTypeForNormal ================= */ int PlaneTypeForNormal (vec3_t normal) { if (normal[0] == 1.0 || normal[0] == -1.0) return PLANE_X; if (normal[1] == 1.0 || normal[1] == -1.0) return PLANE_Y; if (normal[2] == 1.0 || normal[2] == -1.0) return PLANE_Z; return PLANE_NON_AXIAL; } /* ================ MatrixMultiply ================ */ void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) { out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0]; out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1]; out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]; out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0]; out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1]; out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]; out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0]; out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1]; out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]; } void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal ) { float d; vec3_t n; float inv_denom; inv_denom = 1.0F / DotProduct( normal, normal ); d = DotProduct( normal, p ) * inv_denom; n[0] = normal[0] * inv_denom; n[1] = normal[1] * inv_denom; n[2] = normal[2] * inv_denom; dst[0] = p[0] - d * n[0]; dst[1] = p[1] - d * n[1]; dst[2] = p[2] - d * n[2]; } /* ** assumes "src" is normalized */ void PerpendicularVector( vec3_t dst, const vec3_t src ) { int pos; int i; float minelem = 1.0F; vec3_t tempvec; /* ** find the smallest magnitude axially aligned vector */ for ( pos = 0, i = 0; i < 3; i++ ) { if ( fabs( src[i] ) < minelem ) { pos = i; minelem = fabs( src[i] ); } } tempvec[0] = tempvec[1] = tempvec[2] = 0.0F; tempvec[pos] = 1.0F; /* ** project the point onto the plane defined by src */ ProjectPointOnPlane( dst, tempvec, src ); /* ** normalize the result */ VectorNormalize( dst, dst ); } /* =============== RotatePointAroundVector This is not implemented very well... =============== */ void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees ) { float m[3][3]; float im[3][3]; float zrot[3][3]; float tmpmat[3][3]; float rot[3][3]; int i; vec3_t vr, vup, vf; float rad; vf[0] = dir[0]; vf[1] = dir[1]; vf[2] = dir[2]; PerpendicularVector( vr, dir ); CrossProduct( vr, vf, vup ); m[0][0] = vr[0]; m[1][0] = vr[1]; m[2][0] = vr[2]; m[0][1] = vup[0]; m[1][1] = vup[1]; m[2][1] = vup[2]; m[0][2] = vf[0]; m[1][2] = vf[1]; m[2][2] = vf[2]; memcpy( im, m, sizeof( im ) ); im[0][1] = m[1][0]; im[0][2] = m[2][0]; im[1][0] = m[0][1]; im[1][2] = m[2][1]; im[2][0] = m[0][2]; im[2][1] = m[1][2]; memset( zrot, 0, sizeof( zrot ) ); zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F; rad = DEG2RAD( degrees ); zrot[0][0] = cos( rad ); zrot[0][1] = sin( rad ); zrot[1][0] = -sin( rad ); zrot[1][1] = cos( rad ); MatrixMultiply( m, zrot, tmpmat ); MatrixMultiply( tmpmat, im, rot ); for ( i = 0; i < 3; i++ ) { dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2]; } }