ref: bea7b7bf8ccbc2bc41906517079e76fcfb31cb5a
dir: /code/qcommon/cm_patch.c/
/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Foobar; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ #include "cm_local.h" /* This file does not reference any globals, and has these entry points: void CM_ClearLevelPatches( void ); struct patchCollide_s *CM_GeneratePatchCollide( int width, int height, const vec3_t *points ); void CM_TraceThroughPatchCollide( traceWork_t *tw, const struct patchCollide_s *pc ); qboolean CM_PositionTestInPatchCollide( traceWork_t *tw, const struct patchCollide_s *pc ); void CM_DrawDebugSurface( void (*drawPoly)(int color, int numPoints, flaot *points) ); WARNING: this may misbehave with meshes that have rows or columns that only degenerate a few triangles. Completely degenerate rows and columns are handled properly. */ /* #define MAX_FACETS 1024 #define MAX_PATCH_PLANES 2048 typedef struct { float plane[4]; int signbits; // signx + (signy<<1) + (signz<<2), used as lookup during collision } patchPlane_t; typedef struct { int surfacePlane; int numBorders; // 3 or four + 6 axial bevels + 4 or 3 * 4 edge bevels int borderPlanes[4+6+16]; int borderInward[4+6+16]; qboolean borderNoAdjust[4+6+16]; } facet_t; typedef struct patchCollide_s { vec3_t bounds[2]; int numPlanes; // surface planes plus edge planes patchPlane_t *planes; int numFacets; facet_t *facets; } patchCollide_t; #define MAX_GRID_SIZE 129 typedef struct { int width; int height; qboolean wrapWidth; qboolean wrapHeight; vec3_t points[MAX_GRID_SIZE][MAX_GRID_SIZE]; // [width][height] } cGrid_t; #define SUBDIVIDE_DISTANCE 16 //4 // never more than this units away from curve #define PLANE_TRI_EPSILON 0.1 #define WRAP_POINT_EPSILON 0.1 */ int c_totalPatchBlocks; int c_totalPatchSurfaces; int c_totalPatchEdges; static const patchCollide_t *debugPatchCollide; static const facet_t *debugFacet; static qboolean debugBlock; static vec3_t debugBlockPoints[4]; /* ================= CM_ClearLevelPatches ================= */ void CM_ClearLevelPatches( void ) { debugPatchCollide = NULL; debugFacet = NULL; } /* ================= CM_SignbitsForNormal ================= */ static int CM_SignbitsForNormal( vec3_t normal ) { int bits, j; bits = 0; for (j=0 ; j<3 ; j++) { if ( normal[j] < 0 ) { bits |= 1<<j; } } return bits; } /* ===================== CM_PlaneFromPoints Returns false if the triangle is degenrate. The normal will point out of the clock for clockwise ordered points ===================== */ static qboolean CM_PlaneFromPoints( vec4_t plane, vec3_t a, vec3_t b, vec3_t c ) { vec3_t d1, d2; VectorSubtract( b, a, d1 ); VectorSubtract( c, a, d2 ); CrossProduct( d2, d1, plane ); if ( VectorNormalize( plane ) == 0 ) { return qfalse; } plane[3] = DotProduct( a, plane ); return qtrue; } /* ================================================================================ GRID SUBDIVISION ================================================================================ */ /* ================= CM_NeedsSubdivision Returns true if the given quadratic curve is not flat enough for our collision detection purposes ================= */ static qboolean CM_NeedsSubdivision( vec3_t a, vec3_t b, vec3_t c ) { vec3_t cmid; vec3_t lmid; vec3_t delta; float dist; int i; // calculate the linear midpoint for ( i = 0 ; i < 3 ; i++ ) { lmid[i] = 0.5*(a[i] + c[i]); } // calculate the exact curve midpoint for ( i = 0 ; i < 3 ; i++ ) { cmid[i] = 0.5 * ( 0.5*(a[i] + b[i]) + 0.5*(b[i] + c[i]) ); } // see if the curve is far enough away from the linear mid VectorSubtract( cmid, lmid, delta ); dist = VectorLength( delta ); return dist >= SUBDIVIDE_DISTANCE; } /* =============== CM_Subdivide a, b, and c are control points. the subdivided sequence will be: a, out1, out2, out3, c =============== */ static void CM_Subdivide( vec3_t a, vec3_t b, vec3_t c, vec3_t out1, vec3_t out2, vec3_t out3 ) { int i; for ( i = 0 ; i < 3 ; i++ ) { out1[i] = 0.5 * (a[i] + b[i]); out3[i] = 0.5 * (b[i] + c[i]); out2[i] = 0.5 * (out1[i] + out3[i]); } } /* ================= CM_TransposeGrid Swaps the rows and columns in place ================= */ static void CM_TransposeGrid( cGrid_t *grid ) { int i, j, l; vec3_t temp; qboolean tempWrap; if ( grid->width > grid->height ) { for ( i = 0 ; i < grid->height ; i++ ) { for ( j = i + 1 ; j < grid->width ; j++ ) { if ( j < grid->height ) { // swap the value VectorCopy( grid->points[i][j], temp ); VectorCopy( grid->points[j][i], grid->points[i][j] ); VectorCopy( temp, grid->points[j][i] ); } else { // just copy VectorCopy( grid->points[j][i], grid->points[i][j] ); } } } } else { for ( i = 0 ; i < grid->width ; i++ ) { for ( j = i + 1 ; j < grid->height ; j++ ) { if ( j < grid->width ) { // swap the value VectorCopy( grid->points[j][i], temp ); VectorCopy( grid->points[i][j], grid->points[j][i] ); VectorCopy( temp, grid->points[i][j] ); } else { // just copy VectorCopy( grid->points[i][j], grid->points[j][i] ); } } } } l = grid->width; grid->width = grid->height; grid->height = l; tempWrap = grid->wrapWidth; grid->wrapWidth = grid->wrapHeight; grid->wrapHeight = tempWrap; } /* =================== CM_SetGridWrapWidth If the left and right columns are exactly equal, set grid->wrapWidth qtrue =================== */ static void CM_SetGridWrapWidth( cGrid_t *grid ) { int i, j; float d; for ( i = 0 ; i < grid->height ; i++ ) { for ( j = 0 ; j < 3 ; j++ ) { d = grid->points[0][i][j] - grid->points[grid->width-1][i][j]; if ( d < -WRAP_POINT_EPSILON || d > WRAP_POINT_EPSILON ) { break; } } if ( j != 3 ) { break; } } if ( i == grid->height ) { grid->wrapWidth = qtrue; } else { grid->wrapWidth = qfalse; } } /* ================= CM_SubdivideGridColumns Adds columns as necessary to the grid until all the aproximating points are within SUBDIVIDE_DISTANCE from the true curve ================= */ static void CM_SubdivideGridColumns( cGrid_t *grid ) { int i, j, k; for ( i = 0 ; i < grid->width - 2 ; ) { // grid->points[i][x] is an interpolating control point // grid->points[i+1][x] is an aproximating control point // grid->points[i+2][x] is an interpolating control point // // first see if we can collapse the aproximating collumn away // for ( j = 0 ; j < grid->height ; j++ ) { if ( CM_NeedsSubdivision( grid->points[i][j], grid->points[i+1][j], grid->points[i+2][j] ) ) { break; } } if ( j == grid->height ) { // all of the points were close enough to the linear midpoints // that we can collapse the entire column away for ( j = 0 ; j < grid->height ; j++ ) { // remove the column for ( k = i + 2 ; k < grid->width ; k++ ) { VectorCopy( grid->points[k][j], grid->points[k-1][j] ); } } grid->width--; // go to the next curve segment i++; continue; } // // we need to subdivide the curve // for ( j = 0 ; j < grid->height ; j++ ) { vec3_t prev, mid, next; // save the control points now VectorCopy( grid->points[i][j], prev ); VectorCopy( grid->points[i+1][j], mid ); VectorCopy( grid->points[i+2][j], next ); // make room for two additional columns in the grid // columns i+1 will be replaced, column i+2 will become i+4 // i+1, i+2, and i+3 will be generated for ( k = grid->width - 1 ; k > i + 1 ; k-- ) { VectorCopy( grid->points[k][j], grid->points[k+2][j] ); } // generate the subdivided points CM_Subdivide( prev, mid, next, grid->points[i+1][j], grid->points[i+2][j], grid->points[i+3][j] ); } grid->width += 2; // the new aproximating point at i+1 may need to be removed // or subdivided farther, so don't advance i } } /* ====================== CM_ComparePoints ====================== */ #define POINT_EPSILON 0.1 static qboolean CM_ComparePoints( float *a, float *b ) { float d; d = a[0] - b[0]; if ( d < -POINT_EPSILON || d > POINT_EPSILON ) { return qfalse; } d = a[1] - b[1]; if ( d < -POINT_EPSILON || d > POINT_EPSILON ) { return qfalse; } d = a[2] - b[2]; if ( d < -POINT_EPSILON || d > POINT_EPSILON ) { return qfalse; } return qtrue; } /* ================= CM_RemoveDegenerateColumns If there are any identical columns, remove them ================= */ static void CM_RemoveDegenerateColumns( cGrid_t *grid ) { int i, j, k; for ( i = 0 ; i < grid->width - 1 ; i++ ) { for ( j = 0 ; j < grid->height ; j++ ) { if ( !CM_ComparePoints( grid->points[i][j], grid->points[i+1][j] ) ) { break; } } if ( j != grid->height ) { continue; // not degenerate } for ( j = 0 ; j < grid->height ; j++ ) { // remove the column for ( k = i + 2 ; k < grid->width ; k++ ) { VectorCopy( grid->points[k][j], grid->points[k-1][j] ); } } grid->width--; // check against the next column i--; } } /* ================================================================================ PATCH COLLIDE GENERATION ================================================================================ */ static int numPlanes; static patchPlane_t planes[MAX_PATCH_PLANES]; static int numFacets; static facet_t facets[MAX_PATCH_PLANES]; //maybe MAX_FACETS ?? #define NORMAL_EPSILON 0.0001 #define DIST_EPSILON 0.02 /* ================== CM_PlaneEqual ================== */ int CM_PlaneEqual(patchPlane_t *p, float plane[4], int *flipped) { float invplane[4]; if ( fabs(p->plane[0] - plane[0]) < NORMAL_EPSILON && fabs(p->plane[1] - plane[1]) < NORMAL_EPSILON && fabs(p->plane[2] - plane[2]) < NORMAL_EPSILON && fabs(p->plane[3] - plane[3]) < DIST_EPSILON ) { *flipped = qfalse; return qtrue; } VectorNegate(plane, invplane); invplane[3] = -plane[3]; if ( fabs(p->plane[0] - invplane[0]) < NORMAL_EPSILON && fabs(p->plane[1] - invplane[1]) < NORMAL_EPSILON && fabs(p->plane[2] - invplane[2]) < NORMAL_EPSILON && fabs(p->plane[3] - invplane[3]) < DIST_EPSILON ) { *flipped = qtrue; return qtrue; } return qfalse; } /* ================== CM_SnapVector ================== */ void CM_SnapVector(vec3_t normal) { int i; for (i=0 ; i<3 ; i++) { if ( fabs(normal[i] - 1) < NORMAL_EPSILON ) { VectorClear (normal); normal[i] = 1; break; } if ( fabs(normal[i] - -1) < NORMAL_EPSILON ) { VectorClear (normal); normal[i] = -1; break; } } } /* ================== CM_FindPlane2 ================== */ int CM_FindPlane2(float plane[4], int *flipped) { int i; // see if the points are close enough to an existing plane for ( i = 0 ; i < numPlanes ; i++ ) { if (CM_PlaneEqual(&planes[i], plane, flipped)) return i; } // add a new plane if ( numPlanes == MAX_PATCH_PLANES ) { Com_Error( ERR_DROP, "MAX_PATCH_PLANES" ); } Vector4Copy( plane, planes[numPlanes].plane ); planes[numPlanes].signbits = CM_SignbitsForNormal( plane ); numPlanes++; *flipped = qfalse; return numPlanes-1; } /* ================== CM_FindPlane ================== */ static int CM_FindPlane( float *p1, float *p2, float *p3 ) { float plane[4]; int i; float d; if ( !CM_PlaneFromPoints( plane, p1, p2, p3 ) ) { return -1; } // see if the points are close enough to an existing plane for ( i = 0 ; i < numPlanes ; i++ ) { if ( DotProduct( plane, planes[i].plane ) < 0 ) { continue; // allow backwards planes? } d = DotProduct( p1, planes[i].plane ) - planes[i].plane[3]; if ( d < -PLANE_TRI_EPSILON || d > PLANE_TRI_EPSILON ) { continue; } d = DotProduct( p2, planes[i].plane ) - planes[i].plane[3]; if ( d < -PLANE_TRI_EPSILON || d > PLANE_TRI_EPSILON ) { continue; } d = DotProduct( p3, planes[i].plane ) - planes[i].plane[3]; if ( d < -PLANE_TRI_EPSILON || d > PLANE_TRI_EPSILON ) { continue; } // found it return i; } // add a new plane if ( numPlanes == MAX_PATCH_PLANES ) { Com_Error( ERR_DROP, "MAX_PATCH_PLANES" ); } Vector4Copy( plane, planes[numPlanes].plane ); planes[numPlanes].signbits = CM_SignbitsForNormal( plane ); numPlanes++; return numPlanes-1; } /* ================== CM_PointOnPlaneSide ================== */ static int CM_PointOnPlaneSide( float *p, int planeNum ) { float *plane; float d; if ( planeNum == -1 ) { return SIDE_ON; } plane = planes[ planeNum ].plane; d = DotProduct( p, plane ) - plane[3]; if ( d > PLANE_TRI_EPSILON ) { return SIDE_FRONT; } if ( d < -PLANE_TRI_EPSILON ) { return SIDE_BACK; } return SIDE_ON; } /* ================== CM_GridPlane ================== */ static int CM_GridPlane( int gridPlanes[MAX_GRID_SIZE][MAX_GRID_SIZE][2], int i, int j, int tri ) { int p; p = gridPlanes[i][j][tri]; if ( p != -1 ) { return p; } p = gridPlanes[i][j][!tri]; if ( p != -1 ) { return p; } // should never happen Com_Printf( "WARNING: CM_GridPlane unresolvable\n" ); return -1; } /* ================== CM_EdgePlaneNum ================== */ static int CM_EdgePlaneNum( cGrid_t *grid, int gridPlanes[MAX_GRID_SIZE][MAX_GRID_SIZE][2], int i, int j, int k ) { float *p1, *p2; vec3_t up; int p; switch ( k ) { case 0: // top border p1 = grid->points[i][j]; p2 = grid->points[i+1][j]; p = CM_GridPlane( gridPlanes, i, j, 0 ); VectorMA( p1, 4, planes[ p ].plane, up ); return CM_FindPlane( p1, p2, up ); case 2: // bottom border p1 = grid->points[i][j+1]; p2 = grid->points[i+1][j+1]; p = CM_GridPlane( gridPlanes, i, j, 1 ); VectorMA( p1, 4, planes[ p ].plane, up ); return CM_FindPlane( p2, p1, up ); case 3: // left border p1 = grid->points[i][j]; p2 = grid->points[i][j+1]; p = CM_GridPlane( gridPlanes, i, j, 1 ); VectorMA( p1, 4, planes[ p ].plane, up ); return CM_FindPlane( p2, p1, up ); case 1: // right border p1 = grid->points[i+1][j]; p2 = grid->points[i+1][j+1]; p = CM_GridPlane( gridPlanes, i, j, 0 ); VectorMA( p1, 4, planes[ p ].plane, up ); return CM_FindPlane( p1, p2, up ); case 4: // diagonal out of triangle 0 p1 = grid->points[i+1][j+1]; p2 = grid->points[i][j]; p = CM_GridPlane( gridPlanes, i, j, 0 ); VectorMA( p1, 4, planes[ p ].plane, up ); return CM_FindPlane( p1, p2, up ); case 5: // diagonal out of triangle 1 p1 = grid->points[i][j]; p2 = grid->points[i+1][j+1]; p = CM_GridPlane( gridPlanes, i, j, 1 ); VectorMA( p1, 4, planes[ p ].plane, up ); return CM_FindPlane( p1, p2, up ); } Com_Error( ERR_DROP, "CM_EdgePlaneNum: bad k" ); return -1; } /* =================== CM_SetBorderInward =================== */ static void CM_SetBorderInward( facet_t *facet, cGrid_t *grid, int gridPlanes[MAX_GRID_SIZE][MAX_GRID_SIZE][2], int i, int j, int which ) { int k, l; float *points[4]; int numPoints; switch ( which ) { case -1: points[0] = grid->points[i][j]; points[1] = grid->points[i+1][j]; points[2] = grid->points[i+1][j+1]; points[3] = grid->points[i][j+1]; numPoints = 4; break; case 0: points[0] = grid->points[i][j]; points[1] = grid->points[i+1][j]; points[2] = grid->points[i+1][j+1]; numPoints = 3; break; case 1: points[0] = grid->points[i+1][j+1]; points[1] = grid->points[i][j+1]; points[2] = grid->points[i][j]; numPoints = 3; break; default: Com_Error( ERR_FATAL, "CM_SetBorderInward: bad parameter" ); numPoints = 0; break; } for ( k = 0 ; k < facet->numBorders ; k++ ) { int front, back; front = 0; back = 0; for ( l = 0 ; l < numPoints ; l++ ) { int side; side = CM_PointOnPlaneSide( points[l], facet->borderPlanes[k] ); if ( side == SIDE_FRONT ) { front++; } if ( side == SIDE_BACK ) { back++; } } if ( front && !back ) { facet->borderInward[k] = qtrue; } else if ( back && !front ) { facet->borderInward[k] = qfalse; } else if ( !front && !back ) { // flat side border facet->borderPlanes[k] = -1; } else { // bisecting side border Com_DPrintf( "WARNING: CM_SetBorderInward: mixed plane sides\n" ); facet->borderInward[k] = qfalse; if ( !debugBlock ) { debugBlock = qtrue; VectorCopy( grid->points[i][j], debugBlockPoints[0] ); VectorCopy( grid->points[i+1][j], debugBlockPoints[1] ); VectorCopy( grid->points[i+1][j+1], debugBlockPoints[2] ); VectorCopy( grid->points[i][j+1], debugBlockPoints[3] ); } } } } /* ================== CM_ValidateFacet If the facet isn't bounded by its borders, we screwed up. ================== */ static qboolean CM_ValidateFacet( facet_t *facet ) { float plane[4]; int j; winding_t *w; vec3_t bounds[2]; if ( facet->surfacePlane == -1 ) { return qfalse; } Vector4Copy( planes[ facet->surfacePlane ].plane, plane ); w = BaseWindingForPlane( plane, plane[3] ); for ( j = 0 ; j < facet->numBorders && w ; j++ ) { if ( facet->borderPlanes[j] == -1 ) { return qfalse; } Vector4Copy( planes[ facet->borderPlanes[j] ].plane, plane ); if ( !facet->borderInward[j] ) { VectorSubtract( vec3_origin, plane, plane ); plane[3] = -plane[3]; } ChopWindingInPlace( &w, plane, plane[3], 0.1f ); } if ( !w ) { return qfalse; // winding was completely chopped away } // see if the facet is unreasonably large WindingBounds( w, bounds[0], bounds[1] ); FreeWinding( w ); for ( j = 0 ; j < 3 ; j++ ) { if ( bounds[1][j] - bounds[0][j] > MAX_MAP_BOUNDS ) { return qfalse; // we must be missing a plane } if ( bounds[0][j] >= MAX_MAP_BOUNDS ) { return qfalse; } if ( bounds[1][j] <= -MAX_MAP_BOUNDS ) { return qfalse; } } return qtrue; // winding is fine } /* ================== CM_AddFacetBevels ================== */ void CM_AddFacetBevels( facet_t *facet ) { int i, j, k, l; int axis, dir, order, flipped; float plane[4], d, newplane[4]; winding_t *w, *w2; vec3_t mins, maxs, vec, vec2; Vector4Copy( planes[ facet->surfacePlane ].plane, plane ); w = BaseWindingForPlane( plane, plane[3] ); for ( j = 0 ; j < facet->numBorders && w ; j++ ) { if (facet->borderPlanes[j] == facet->surfacePlane) continue; Vector4Copy( planes[ facet->borderPlanes[j] ].plane, plane ); if ( !facet->borderInward[j] ) { VectorSubtract( vec3_origin, plane, plane ); plane[3] = -plane[3]; } ChopWindingInPlace( &w, plane, plane[3], 0.1f ); } if ( !w ) { return; } WindingBounds(w, mins, maxs); // add the axial planes order = 0; for ( axis = 0 ; axis < 3 ; axis++ ) { for ( dir = -1 ; dir <= 1 ; dir += 2, order++ ) { VectorClear(plane); plane[axis] = dir; if (dir == 1) { plane[3] = maxs[axis]; } else { plane[3] = -mins[axis]; } //if it's the surface plane if (CM_PlaneEqual(&planes[facet->surfacePlane], plane, &flipped)) { continue; } // see if the plane is allready present for ( i = 0 ; i < facet->numBorders ; i++ ) { if (CM_PlaneEqual(&planes[facet->borderPlanes[i]], plane, &flipped)) break; } if ( i == facet->numBorders ) { if (facet->numBorders > 4 + 6 + 16) Com_Printf("ERROR: too many bevels\n"); facet->borderPlanes[facet->numBorders] = CM_FindPlane2(plane, &flipped); facet->borderNoAdjust[facet->numBorders] = 0; facet->borderInward[facet->numBorders] = flipped; facet->numBorders++; } } } // // add the edge bevels // // test the non-axial plane edges for ( j = 0 ; j < w->numpoints ; j++ ) { k = (j+1)%w->numpoints; VectorSubtract (w->p[j], w->p[k], vec); //if it's a degenerate edge if (VectorNormalize (vec) < 0.5) continue; CM_SnapVector(vec); for ( k = 0; k < 3 ; k++ ) if ( vec[k] == -1 || vec[k] == 1 ) break; // axial if ( k < 3 ) continue; // only test non-axial edges // try the six possible slanted axials from this edge for ( axis = 0 ; axis < 3 ; axis++ ) { for ( dir = -1 ; dir <= 1 ; dir += 2 ) { // construct a plane VectorClear (vec2); vec2[axis] = dir; CrossProduct (vec, vec2, plane); if (VectorNormalize (plane) < 0.5) continue; plane[3] = DotProduct (w->p[j], plane); // if all the points of the facet winding are // behind this plane, it is a proper edge bevel for ( l = 0 ; l < w->numpoints ; l++ ) { d = DotProduct (w->p[l], plane) - plane[3]; if (d > 0.1) break; // point in front } if ( l < w->numpoints ) continue; //if it's the surface plane if (CM_PlaneEqual(&planes[facet->surfacePlane], plane, &flipped)) { continue; } // see if the plane is allready present for ( i = 0 ; i < facet->numBorders ; i++ ) { if (CM_PlaneEqual(&planes[facet->borderPlanes[i]], plane, &flipped)) { break; } } if ( i == facet->numBorders ) { if (facet->numBorders > 4 + 6 + 16) Com_Printf("ERROR: too many bevels\n"); facet->borderPlanes[facet->numBorders] = CM_FindPlane2(plane, &flipped); for ( k = 0 ; k < facet->numBorders ; k++ ) { if (facet->borderPlanes[facet->numBorders] == facet->borderPlanes[k]) Com_Printf("WARNING: bevel plane already used\n"); } facet->borderNoAdjust[facet->numBorders] = 0; facet->borderInward[facet->numBorders] = flipped; // w2 = CopyWinding(w); Vector4Copy(planes[facet->borderPlanes[facet->numBorders]].plane, newplane); if (!facet->borderInward[facet->numBorders]) { VectorNegate(newplane, newplane); newplane[3] = -newplane[3]; } //end if ChopWindingInPlace( &w2, newplane, newplane[3], 0.1f ); if (!w2) { Com_DPrintf("WARNING: CM_AddFacetBevels... invalid bevel\n"); continue; } else { FreeWinding(w2); } // facet->numBorders++; //already got a bevel // break; } } } } FreeWinding( w ); #ifndef BSPC //add opposite plane facet->borderPlanes[facet->numBorders] = facet->surfacePlane; facet->borderNoAdjust[facet->numBorders] = 0; facet->borderInward[facet->numBorders] = qtrue; facet->numBorders++; #endif //BSPC } typedef enum { EN_TOP, EN_RIGHT, EN_BOTTOM, EN_LEFT } edgeName_t; /* ================== CM_PatchCollideFromGrid ================== */ static void CM_PatchCollideFromGrid( cGrid_t *grid, patchCollide_t *pf ) { int i, j; float *p1, *p2, *p3; MAC_STATIC int gridPlanes[MAX_GRID_SIZE][MAX_GRID_SIZE][2]; facet_t *facet; int borders[4]; int noAdjust[4]; numPlanes = 0; numFacets = 0; // find the planes for each triangle of the grid for ( i = 0 ; i < grid->width - 1 ; i++ ) { for ( j = 0 ; j < grid->height - 1 ; j++ ) { p1 = grid->points[i][j]; p2 = grid->points[i+1][j]; p3 = grid->points[i+1][j+1]; gridPlanes[i][j][0] = CM_FindPlane( p1, p2, p3 ); p1 = grid->points[i+1][j+1]; p2 = grid->points[i][j+1]; p3 = grid->points[i][j]; gridPlanes[i][j][1] = CM_FindPlane( p1, p2, p3 ); } } // create the borders for each facet for ( i = 0 ; i < grid->width - 1 ; i++ ) { for ( j = 0 ; j < grid->height - 1 ; j++ ) { borders[EN_TOP] = -1; if ( j > 0 ) { borders[EN_TOP] = gridPlanes[i][j-1][1]; } else if ( grid->wrapHeight ) { borders[EN_TOP] = gridPlanes[i][grid->height-2][1]; } noAdjust[EN_TOP] = ( borders[EN_TOP] == gridPlanes[i][j][0] ); if ( borders[EN_TOP] == -1 || noAdjust[EN_TOP] ) { borders[EN_TOP] = CM_EdgePlaneNum( grid, gridPlanes, i, j, 0 ); } borders[EN_BOTTOM] = -1; if ( j < grid->height - 2 ) { borders[EN_BOTTOM] = gridPlanes[i][j+1][0]; } else if ( grid->wrapHeight ) { borders[EN_BOTTOM] = gridPlanes[i][0][0]; } noAdjust[EN_BOTTOM] = ( borders[EN_BOTTOM] == gridPlanes[i][j][1] ); if ( borders[EN_BOTTOM] == -1 || noAdjust[EN_BOTTOM] ) { borders[EN_BOTTOM] = CM_EdgePlaneNum( grid, gridPlanes, i, j, 2 ); } borders[EN_LEFT] = -1; if ( i > 0 ) { borders[EN_LEFT] = gridPlanes[i-1][j][0]; } else if ( grid->wrapWidth ) { borders[EN_LEFT] = gridPlanes[grid->width-2][j][0]; } noAdjust[EN_LEFT] = ( borders[EN_LEFT] == gridPlanes[i][j][1] ); if ( borders[EN_LEFT] == -1 || noAdjust[EN_LEFT] ) { borders[EN_LEFT] = CM_EdgePlaneNum( grid, gridPlanes, i, j, 3 ); } borders[EN_RIGHT] = -1; if ( i < grid->width - 2 ) { borders[EN_RIGHT] = gridPlanes[i+1][j][1]; } else if ( grid->wrapWidth ) { borders[EN_RIGHT] = gridPlanes[0][j][1]; } noAdjust[EN_RIGHT] = ( borders[EN_RIGHT] == gridPlanes[i][j][0] ); if ( borders[EN_RIGHT] == -1 || noAdjust[EN_RIGHT] ) { borders[EN_RIGHT] = CM_EdgePlaneNum( grid, gridPlanes, i, j, 1 ); } if ( numFacets == MAX_FACETS ) { Com_Error( ERR_DROP, "MAX_FACETS" ); } facet = &facets[numFacets]; Com_Memset( facet, 0, sizeof( *facet ) ); if ( gridPlanes[i][j][0] == gridPlanes[i][j][1] ) { if ( gridPlanes[i][j][0] == -1 ) { continue; // degenrate } facet->surfacePlane = gridPlanes[i][j][0]; facet->numBorders = 4; facet->borderPlanes[0] = borders[EN_TOP]; facet->borderNoAdjust[0] = noAdjust[EN_TOP]; facet->borderPlanes[1] = borders[EN_RIGHT]; facet->borderNoAdjust[1] = noAdjust[EN_RIGHT]; facet->borderPlanes[2] = borders[EN_BOTTOM]; facet->borderNoAdjust[2] = noAdjust[EN_BOTTOM]; facet->borderPlanes[3] = borders[EN_LEFT]; facet->borderNoAdjust[3] = noAdjust[EN_LEFT]; CM_SetBorderInward( facet, grid, gridPlanes, i, j, -1 ); if ( CM_ValidateFacet( facet ) ) { CM_AddFacetBevels( facet ); numFacets++; } } else { // two seperate triangles facet->surfacePlane = gridPlanes[i][j][0]; facet->numBorders = 3; facet->borderPlanes[0] = borders[EN_TOP]; facet->borderNoAdjust[0] = noAdjust[EN_TOP]; facet->borderPlanes[1] = borders[EN_RIGHT]; facet->borderNoAdjust[1] = noAdjust[EN_RIGHT]; facet->borderPlanes[2] = gridPlanes[i][j][1]; if ( facet->borderPlanes[2] == -1 ) { facet->borderPlanes[2] = borders[EN_BOTTOM]; if ( facet->borderPlanes[2] == -1 ) { facet->borderPlanes[2] = CM_EdgePlaneNum( grid, gridPlanes, i, j, 4 ); } } CM_SetBorderInward( facet, grid, gridPlanes, i, j, 0 ); if ( CM_ValidateFacet( facet ) ) { CM_AddFacetBevels( facet ); numFacets++; } if ( numFacets == MAX_FACETS ) { Com_Error( ERR_DROP, "MAX_FACETS" ); } facet = &facets[numFacets]; Com_Memset( facet, 0, sizeof( *facet ) ); facet->surfacePlane = gridPlanes[i][j][1]; facet->numBorders = 3; facet->borderPlanes[0] = borders[EN_BOTTOM]; facet->borderNoAdjust[0] = noAdjust[EN_BOTTOM]; facet->borderPlanes[1] = borders[EN_LEFT]; facet->borderNoAdjust[1] = noAdjust[EN_LEFT]; facet->borderPlanes[2] = gridPlanes[i][j][0]; if ( facet->borderPlanes[2] == -1 ) { facet->borderPlanes[2] = borders[EN_TOP]; if ( facet->borderPlanes[2] == -1 ) { facet->borderPlanes[2] = CM_EdgePlaneNum( grid, gridPlanes, i, j, 5 ); } } CM_SetBorderInward( facet, grid, gridPlanes, i, j, 1 ); if ( CM_ValidateFacet( facet ) ) { CM_AddFacetBevels( facet ); numFacets++; } } } } // copy the results out pf->numPlanes = numPlanes; pf->numFacets = numFacets; pf->facets = Hunk_Alloc( numFacets * sizeof( *pf->facets ), h_high ); Com_Memcpy( pf->facets, facets, numFacets * sizeof( *pf->facets ) ); pf->planes = Hunk_Alloc( numPlanes * sizeof( *pf->planes ), h_high ); Com_Memcpy( pf->planes, planes, numPlanes * sizeof( *pf->planes ) ); } /* =================== CM_GeneratePatchCollide Creates an internal structure that will be used to perform collision detection with a patch mesh. Points is packed as concatenated rows. =================== */ struct patchCollide_s *CM_GeneratePatchCollide( int width, int height, vec3_t *points ) { patchCollide_t *pf; MAC_STATIC cGrid_t grid; int i, j; if ( width <= 2 || height <= 2 || !points ) { Com_Error( ERR_DROP, "CM_GeneratePatchFacets: bad parameters: (%i, %i, %p)", width, height, points ); } if ( !(width & 1) || !(height & 1) ) { Com_Error( ERR_DROP, "CM_GeneratePatchFacets: even sizes are invalid for quadratic meshes" ); } if ( width > MAX_GRID_SIZE || height > MAX_GRID_SIZE ) { Com_Error( ERR_DROP, "CM_GeneratePatchFacets: source is > MAX_GRID_SIZE" ); } // build a grid grid.width = width; grid.height = height; grid.wrapWidth = qfalse; grid.wrapHeight = qfalse; for ( i = 0 ; i < width ; i++ ) { for ( j = 0 ; j < height ; j++ ) { VectorCopy( points[j*width + i], grid.points[i][j] ); } } // subdivide the grid CM_SetGridWrapWidth( &grid ); CM_SubdivideGridColumns( &grid ); CM_RemoveDegenerateColumns( &grid ); CM_TransposeGrid( &grid ); CM_SetGridWrapWidth( &grid ); CM_SubdivideGridColumns( &grid ); CM_RemoveDegenerateColumns( &grid ); // we now have a grid of points exactly on the curve // the aproximate surface defined by these points will be // collided against pf = Hunk_Alloc( sizeof( *pf ), h_high ); ClearBounds( pf->bounds[0], pf->bounds[1] ); for ( i = 0 ; i < grid.width ; i++ ) { for ( j = 0 ; j < grid.height ; j++ ) { AddPointToBounds( grid.points[i][j], pf->bounds[0], pf->bounds[1] ); } } c_totalPatchBlocks += ( grid.width - 1 ) * ( grid.height - 1 ); // generate a bsp tree for the surface CM_PatchCollideFromGrid( &grid, pf ); // expand by one unit for epsilon purposes pf->bounds[0][0] -= 1; pf->bounds[0][1] -= 1; pf->bounds[0][2] -= 1; pf->bounds[1][0] += 1; pf->bounds[1][1] += 1; pf->bounds[1][2] += 1; return pf; } /* ================================================================================ TRACE TESTING ================================================================================ */ /* ==================== CM_TracePointThroughPatchCollide special case for point traces because the patch collide "brushes" have no volume ==================== */ void CM_TracePointThroughPatchCollide( traceWork_t *tw, const struct patchCollide_s *pc ) { qboolean frontFacing[MAX_PATCH_PLANES]; float intersection[MAX_PATCH_PLANES]; float intersect; const patchPlane_t *planes; const facet_t *facet; int i, j, k; float offset; float d1, d2; #ifndef BSPC static cvar_t *cv; #endif //BSPC #ifndef BSPC if ( !cm_playerCurveClip->integer || !tw->isPoint ) { return; } #endif // determine the trace's relationship to all planes planes = pc->planes; for ( i = 0 ; i < pc->numPlanes ; i++, planes++ ) { offset = DotProduct( tw->offsets[ planes->signbits ], planes->plane ); d1 = DotProduct( tw->start, planes->plane ) - planes->plane[3] + offset; d2 = DotProduct( tw->end, planes->plane ) - planes->plane[3] + offset; if ( d1 <= 0 ) { frontFacing[i] = qfalse; } else { frontFacing[i] = qtrue; } if ( d1 == d2 ) { intersection[i] = 99999; } else { intersection[i] = d1 / ( d1 - d2 ); if ( intersection[i] <= 0 ) { intersection[i] = 99999; } } } // see if any of the surface planes are intersected facet = pc->facets; for ( i = 0 ; i < pc->numFacets ; i++, facet++ ) { if ( !frontFacing[facet->surfacePlane] ) { continue; } intersect = intersection[facet->surfacePlane]; if ( intersect < 0 ) { continue; // surface is behind the starting point } if ( intersect > tw->trace.fraction ) { continue; // already hit something closer } for ( j = 0 ; j < facet->numBorders ; j++ ) { k = facet->borderPlanes[j]; if ( frontFacing[k] ^ facet->borderInward[j] ) { if ( intersection[k] > intersect ) { break; } } else { if ( intersection[k] < intersect ) { break; } } } if ( j == facet->numBorders ) { // we hit this facet #ifndef BSPC if (!cv) { cv = Cvar_Get( "r_debugSurfaceUpdate", "1", 0 ); } if (cv->integer) { debugPatchCollide = pc; debugFacet = facet; } #endif //BSPC planes = &pc->planes[facet->surfacePlane]; // calculate intersection with a slight pushoff offset = DotProduct( tw->offsets[ planes->signbits ], planes->plane ); d1 = DotProduct( tw->start, planes->plane ) - planes->plane[3] + offset; d2 = DotProduct( tw->end, planes->plane ) - planes->plane[3] + offset; tw->trace.fraction = ( d1 - SURFACE_CLIP_EPSILON ) / ( d1 - d2 ); if ( tw->trace.fraction < 0 ) { tw->trace.fraction = 0; } VectorCopy( planes->plane, tw->trace.plane.normal ); tw->trace.plane.dist = planes->plane[3]; } } } /* ==================== CM_CheckFacetPlane ==================== */ int CM_CheckFacetPlane(float *plane, vec3_t start, vec3_t end, float *enterFrac, float *leaveFrac, int *hit) { float d1, d2, f; *hit = qfalse; d1 = DotProduct( start, plane ) - plane[3]; d2 = DotProduct( end, plane ) - plane[3]; // if completely in front of face, no intersection with the entire facet if (d1 > 0 && ( d2 >= SURFACE_CLIP_EPSILON || d2 >= d1 ) ) { return qfalse; } // if it doesn't cross the plane, the plane isn't relevent if (d1 <= 0 && d2 <= 0 ) { return qtrue; } // crosses face if (d1 > d2) { // enter f = (d1-SURFACE_CLIP_EPSILON) / (d1-d2); if ( f < 0 ) { f = 0; } //always favor previous plane hits and thus also the surface plane hit if (f > *enterFrac) { *enterFrac = f; *hit = qtrue; } } else { // leave f = (d1+SURFACE_CLIP_EPSILON) / (d1-d2); if ( f > 1 ) { f = 1; } if (f < *leaveFrac) { *leaveFrac = f; } } return qtrue; } /* ==================== CM_TraceThroughPatchCollide ==================== */ void CM_TraceThroughPatchCollide( traceWork_t *tw, const struct patchCollide_s *pc ) { int i, j, hit, hitnum; float offset, enterFrac, leaveFrac, t; patchPlane_t *planes; facet_t *facet; float plane[4], bestplane[4]; vec3_t startp, endp; #ifndef BSPC static cvar_t *cv; #endif //BSPC if (tw->isPoint) { CM_TracePointThroughPatchCollide( tw, pc ); return; } facet = pc->facets; for ( i = 0 ; i < pc->numFacets ; i++, facet++ ) { enterFrac = -1.0; leaveFrac = 1.0; hitnum = -1; // planes = &pc->planes[ facet->surfacePlane ]; VectorCopy(planes->plane, plane); plane[3] = planes->plane[3]; if ( tw->sphere.use ) { // adjust the plane distance apropriately for radius plane[3] += tw->sphere.radius; // find the closest point on the capsule to the plane t = DotProduct( plane, tw->sphere.offset ); if ( t > 0.0f ) { VectorSubtract( tw->start, tw->sphere.offset, startp ); VectorSubtract( tw->end, tw->sphere.offset, endp ); } else { VectorAdd( tw->start, tw->sphere.offset, startp ); VectorAdd( tw->end, tw->sphere.offset, endp ); } } else { offset = DotProduct( tw->offsets[ planes->signbits ], plane); plane[3] -= offset; VectorCopy( tw->start, startp ); VectorCopy( tw->end, endp ); } if (!CM_CheckFacetPlane(plane, startp, endp, &enterFrac, &leaveFrac, &hit)) { continue; } if (hit) { Vector4Copy(plane, bestplane); } for ( j = 0; j < facet->numBorders; j++ ) { planes = &pc->planes[ facet->borderPlanes[j] ]; if (facet->borderInward[j]) { VectorNegate(planes->plane, plane); plane[3] = -planes->plane[3]; } else { VectorCopy(planes->plane, plane); plane[3] = planes->plane[3]; } if ( tw->sphere.use ) { // adjust the plane distance apropriately for radius plane[3] += tw->sphere.radius; // find the closest point on the capsule to the plane t = DotProduct( plane, tw->sphere.offset ); if ( t > 0.0f ) { VectorSubtract( tw->start, tw->sphere.offset, startp ); VectorSubtract( tw->end, tw->sphere.offset, endp ); } else { VectorAdd( tw->start, tw->sphere.offset, startp ); VectorAdd( tw->end, tw->sphere.offset, endp ); } } else { // NOTE: this works even though the plane might be flipped because the bbox is centered offset = DotProduct( tw->offsets[ planes->signbits ], plane); plane[3] += fabs(offset); VectorCopy( tw->start, startp ); VectorCopy( tw->end, endp ); } if (!CM_CheckFacetPlane(plane, startp, endp, &enterFrac, &leaveFrac, &hit)) { break; } if (hit) { hitnum = j; Vector4Copy(plane, bestplane); } } if (j < facet->numBorders) continue; //never clip against the back side if (hitnum == facet->numBorders - 1) continue; if (enterFrac < leaveFrac && enterFrac >= 0) { if (enterFrac < tw->trace.fraction) { if (enterFrac < 0) { enterFrac = 0; } #ifndef BSPC if (!cv) { cv = Cvar_Get( "r_debugSurfaceUpdate", "1", 0 ); } if (cv && cv->integer) { debugPatchCollide = pc; debugFacet = facet; } #endif //BSPC tw->trace.fraction = enterFrac; VectorCopy( bestplane, tw->trace.plane.normal ); tw->trace.plane.dist = bestplane[3]; } } } } /* ======================================================================= POSITION TEST ======================================================================= */ /* ==================== CM_PositionTestInPatchCollide ==================== */ qboolean CM_PositionTestInPatchCollide( traceWork_t *tw, const struct patchCollide_s *pc ) { int i, j; float offset, t; patchPlane_t *planes; facet_t *facet; float plane[4]; vec3_t startp; if (tw->isPoint) { return qfalse; } // facet = pc->facets; for ( i = 0 ; i < pc->numFacets ; i++, facet++ ) { planes = &pc->planes[ facet->surfacePlane ]; VectorCopy(planes->plane, plane); plane[3] = planes->plane[3]; if ( tw->sphere.use ) { // adjust the plane distance apropriately for radius plane[3] += tw->sphere.radius; // find the closest point on the capsule to the plane t = DotProduct( plane, tw->sphere.offset ); if ( t > 0 ) { VectorSubtract( tw->start, tw->sphere.offset, startp ); } else { VectorAdd( tw->start, tw->sphere.offset, startp ); } } else { offset = DotProduct( tw->offsets[ planes->signbits ], plane); plane[3] -= offset; VectorCopy( tw->start, startp ); } if ( DotProduct( plane, startp ) - plane[3] > 0.0f ) { continue; } for ( j = 0; j < facet->numBorders; j++ ) { planes = &pc->planes[ facet->borderPlanes[j] ]; if (facet->borderInward[j]) { VectorNegate(planes->plane, plane); plane[3] = -planes->plane[3]; } else { VectorCopy(planes->plane, plane); plane[3] = planes->plane[3]; } if ( tw->sphere.use ) { // adjust the plane distance apropriately for radius plane[3] += tw->sphere.radius; // find the closest point on the capsule to the plane t = DotProduct( plane, tw->sphere.offset ); if ( t > 0.0f ) { VectorSubtract( tw->start, tw->sphere.offset, startp ); } else { VectorAdd( tw->start, tw->sphere.offset, startp ); } } else { // NOTE: this works even though the plane might be flipped because the bbox is centered offset = DotProduct( tw->offsets[ planes->signbits ], plane); plane[3] += fabs(offset); VectorCopy( tw->start, startp ); } if ( DotProduct( plane, startp ) - plane[3] > 0.0f ) { break; } } if (j < facet->numBorders) { continue; } // inside this patch facet return qtrue; } return qfalse; } /* ======================================================================= DEBUGGING ======================================================================= */ /* ================== CM_DrawDebugSurface Called from the renderer ================== */ #ifndef BSPC void BotDrawDebugPolygons(void (*drawPoly)(int color, int numPoints, float *points), int value); #endif void CM_DrawDebugSurface( void (*drawPoly)(int color, int numPoints, float *points) ) { static cvar_t *cv; #ifndef BSPC static cvar_t *cv2; #endif const patchCollide_t *pc; facet_t *facet; winding_t *w; int i, j, k, n; int curplanenum, planenum, curinward, inward; float plane[4]; vec3_t mins = {-15, -15, -28}, maxs = {15, 15, 28}; //vec3_t mins = {0, 0, 0}, maxs = {0, 0, 0}; vec3_t v1, v2; #ifndef BSPC if ( !cv2 ) { cv2 = Cvar_Get( "r_debugSurface", "0", 0 ); } if (cv2->integer != 1) { BotDrawDebugPolygons(drawPoly, cv2->integer); return; } #endif if ( !debugPatchCollide ) { return; } #ifndef BSPC if ( !cv ) { cv = Cvar_Get( "cm_debugSize", "2", 0 ); } #endif pc = debugPatchCollide; for ( i = 0, facet = pc->facets ; i < pc->numFacets ; i++, facet++ ) { for ( k = 0 ; k < facet->numBorders + 1; k++ ) { // if (k < facet->numBorders) { planenum = facet->borderPlanes[k]; inward = facet->borderInward[k]; } else { planenum = facet->surfacePlane; inward = qfalse; //continue; } Vector4Copy( pc->planes[ planenum ].plane, plane ); //planenum = facet->surfacePlane; if ( inward ) { VectorSubtract( vec3_origin, plane, plane ); plane[3] = -plane[3]; } plane[3] += cv->value; //* for (n = 0; n < 3; n++) { if (plane[n] > 0) v1[n] = maxs[n]; else v1[n] = mins[n]; } //end for VectorNegate(plane, v2); plane[3] += fabs(DotProduct(v1, v2)); //*/ w = BaseWindingForPlane( plane, plane[3] ); for ( j = 0 ; j < facet->numBorders + 1 && w; j++ ) { // if (j < facet->numBorders) { curplanenum = facet->borderPlanes[j]; curinward = facet->borderInward[j]; } else { curplanenum = facet->surfacePlane; curinward = qfalse; //continue; } // if (curplanenum == planenum) continue; Vector4Copy( pc->planes[ curplanenum ].plane, plane ); if ( !curinward ) { VectorSubtract( vec3_origin, plane, plane ); plane[3] = -plane[3]; } // if ( !facet->borderNoAdjust[j] ) { plane[3] -= cv->value; // } for (n = 0; n < 3; n++) { if (plane[n] > 0) v1[n] = maxs[n]; else v1[n] = mins[n]; } //end for VectorNegate(plane, v2); plane[3] -= fabs(DotProduct(v1, v2)); ChopWindingInPlace( &w, plane, plane[3], 0.1f ); } if ( w ) { if ( facet == debugFacet ) { drawPoly( 4, w->numpoints, w->p[0] ); //Com_Printf("blue facet has %d border planes\n", facet->numBorders); } else { drawPoly( 1, w->numpoints, w->p[0] ); } FreeWinding( w ); } else Com_Printf("winding chopped away by border planes\n"); } } // draw the debug block { vec3_t v[3]; VectorCopy( debugBlockPoints[0], v[0] ); VectorCopy( debugBlockPoints[1], v[1] ); VectorCopy( debugBlockPoints[2], v[2] ); drawPoly( 2, 3, v[0] ); VectorCopy( debugBlockPoints[2], v[0] ); VectorCopy( debugBlockPoints[3], v[1] ); VectorCopy( debugBlockPoints[0], v[2] ); drawPoly( 2, 3, v[0] ); } }