ref: 13ca2581f9f18d441ce911e42c2bd93e387cee4d
dir: /code/splines/math_vector.h/
/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Foobar; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ #ifndef __MATH_VECTOR_H__ #define __MATH_VECTOR_H__ #if defined(_WIN32) #pragma warning(disable : 4244) #endif #include <math.h> #include <assert.h> //#define DotProduct(a,b) ((a)[0]*(b)[0]+(a)[1]*(b)[1]+(a)[2]*(b)[2]) //#define VectorSubtract(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2]) //#define VectorAdd(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2]) //#define VectorCopy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2]) //#define VectorCopy(a,b) ((b).x=(a).x,(b).y=(a).y,(b).z=(a).z]) //#define VectorScale(v, s, o) ((o)[0]=(v)[0]*(s),(o)[1]=(v)[1]*(s),(o)[2]=(v)[2]*(s)) #define __VectorMA(v, s, b, o) ((o)[0]=(v)[0]+(b)[0]*(s),(o)[1]=(v)[1]+(b)[1]*(s),(o)[2]=(v)[2]+(b)[2]*(s)) //#define CrossProduct(a,b,c) ((c)[0]=(a)[1]*(b)[2]-(a)[2]*(b)[1],(c)[1]=(a)[2]*(b)[0]-(a)[0]*(b)[2],(c)[2]=(a)[0]*(b)[1]-(a)[1]*(b)[0]) #define DotProduct4(x,y) ((x)[0]*(y)[0]+(x)[1]*(y)[1]+(x)[2]*(y)[2]+(x)[3]*(y)[3]) #define VectorSubtract4(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2],(c)[3]=(a)[3]-(b)[3]) #define VectorAdd4(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2],(c)[3]=(a)[3]+(b)[3]) #define VectorCopy4(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3]) #define VectorScale4(v, s, o) ((o)[0]=(v)[0]*(s),(o)[1]=(v)[1]*(s),(o)[2]=(v)[2]*(s),(o)[3]=(v)[3]*(s)) #define VectorMA4(v, s, b, o) ((o)[0]=(v)[0]+(b)[0]*(s),(o)[1]=(v)[1]+(b)[1]*(s),(o)[2]=(v)[2]+(b)[2]*(s),(o)[3]=(v)[3]+(b)[3]*(s)) //#define VectorClear(a) ((a)[0]=(a)[1]=(a)[2]=0) #define VectorNegate(a,b) ((b)[0]=-(a)[0],(b)[1]=-(a)[1],(b)[2]=-(a)[2]) //#define VectorSet(v, x, y, z) ((v)[0]=(x), (v)[1]=(y), (v)[2]=(z)) #define Vector4Copy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3]) #define SnapVector(v) {v[0]=(int)v[0];v[1]=(int)v[1];v[2]=(int)v[2];} //#include "util_heap.h" #ifndef EQUAL_EPSILON #define EQUAL_EPSILON 0.001 #endif float Q_fabs( float f ); #ifndef ID_INLINE #ifdef _WIN32 #define ID_INLINE __inline #else #define ID_INLINE inline #endif #endif // if this is defined, vec3 will take four elements, which may allow // easier SIMD optimizations //#define FAT_VEC3 //#ifdef __ppc__ //#pragma align(16) //#endif class angles_t; #ifdef __ppc__ // Vanilla PPC code, but since PPC has a reciprocal square root estimate instruction, // runs *much* faster than calling sqrt(). We'll use two Newton-Raphson // refinement steps to get bunch more precision in the 1/sqrt() value for very little cost. // We'll then multiply 1/sqrt times the original value to get the sqrt. // This is about 12.4 times faster than sqrt() and according to my testing (not exhaustive) // it returns fairly accurate results (error below 1.0e-5 up to 100000.0 in 0.1 increments). static inline float idSqrt(float x) { const float half = 0.5; const float one = 1.0; float B, y0, y1; // This'll NaN if it hits frsqrte. Handle both +0.0 and -0.0 if (fabs(x) == 0.0) return x; B = x; #ifdef __GNUC__ asm("frsqrte %0,%1" : "=f" (y0) : "f" (B)); #else y0 = __frsqrte(B); #endif /* First refinement step */ y1 = y0 + half*y0*(one - B*y0*y0); /* Second refinement step -- copy the output of the last step to the input of this step */ y0 = y1; y1 = y0 + half*y0*(one - B*y0*y0); /* Get sqrt(x) from x * 1/sqrt(x) */ return x * y1; } #else static inline double idSqrt(double x) { return sqrt(x); } #endif //class idVec3_t : public idHeap<idVec3_t> { class idVec3_t { public: #ifndef FAT_VEC3 float x,y,z; #else float x,y,z,dist; #endif #ifndef FAT_VEC3 idVec3_t() {}; #else idVec3_t() {dist = 0.0f;}; #endif idVec3_t( const float x, const float y, const float z ); operator float *(); float operator[]( const int index ) const; float &operator[]( const int index ); void set( const float x, const float y, const float z ); idVec3_t operator-() const; idVec3_t &operator=( const idVec3_t &a ); float operator*( const idVec3_t &a ) const; idVec3_t operator*( const float a ) const; friend idVec3_t operator*( float a, idVec3_t b ); idVec3_t operator+( const idVec3_t &a ) const; idVec3_t operator-( const idVec3_t &a ) const; idVec3_t &operator+=( const idVec3_t &a ); idVec3_t &operator-=( const idVec3_t &a ); idVec3_t &operator*=( const float a ); int operator==( const idVec3_t &a ) const; int operator!=( const idVec3_t &a ) const; idVec3_t Cross( const idVec3_t &a ) const; idVec3_t &Cross( const idVec3_t &a, const idVec3_t &b ); float Length( void ) const; float Normalize( void ); void Zero( void ); void Snap( void ); void SnapTowards( const idVec3_t &to ); float toYaw( void ); float toPitch( void ); angles_t toAngles( void ); friend idVec3_t LerpVector( const idVec3_t &w1, const idVec3_t &w2, const float t ); char *string( void ); }; extern idVec3_t vec_zero; ID_INLINE idVec3_t::idVec3_t( const float x, const float y, const float z ) { this->x = x; this->y = y; this->z = z; #ifdef FAT_VEC3 this->dist = 0.0f; #endif } ID_INLINE float idVec3_t::operator[]( const int index ) const { return ( &x )[ index ]; } ID_INLINE float &idVec3_t::operator[]( const int index ) { return ( &x )[ index ]; } ID_INLINE idVec3_t::operator float *( void ) { return &x; } ID_INLINE idVec3_t idVec3_t::operator-() const { return idVec3_t( -x, -y, -z ); } ID_INLINE idVec3_t &idVec3_t::operator=( const idVec3_t &a ) { x = a.x; y = a.y; z = a.z; return *this; } ID_INLINE void idVec3_t::set( const float x, const float y, const float z ) { this->x = x; this->y = y; this->z = z; } ID_INLINE idVec3_t idVec3_t::operator-( const idVec3_t &a ) const { return idVec3_t( x - a.x, y - a.y, z - a.z ); } ID_INLINE float idVec3_t::operator*( const idVec3_t &a ) const { return x * a.x + y * a.y + z * a.z; } ID_INLINE idVec3_t idVec3_t::operator*( const float a ) const { return idVec3_t( x * a, y * a, z * a ); } ID_INLINE idVec3_t operator*( const float a, const idVec3_t b ) { return idVec3_t( b.x * a, b.y * a, b.z * a ); } ID_INLINE idVec3_t idVec3_t::operator+( const idVec3_t &a ) const { return idVec3_t( x + a.x, y + a.y, z + a.z ); } ID_INLINE idVec3_t &idVec3_t::operator+=( const idVec3_t &a ) { x += a.x; y += a.y; z += a.z; return *this; } ID_INLINE idVec3_t &idVec3_t::operator-=( const idVec3_t &a ) { x -= a.x; y -= a.y; z -= a.z; return *this; } ID_INLINE idVec3_t &idVec3_t::operator*=( const float a ) { x *= a; y *= a; z *= a; return *this; } ID_INLINE int idVec3_t::operator==( const idVec3_t &a ) const { if ( Q_fabs( x - a.x ) > EQUAL_EPSILON ) { return false; } if ( Q_fabs( y - a.y ) > EQUAL_EPSILON ) { return false; } if ( Q_fabs( z - a.z ) > EQUAL_EPSILON ) { return false; } return true; } ID_INLINE int idVec3_t::operator!=( const idVec3_t &a ) const { if ( Q_fabs( x - a.x ) > EQUAL_EPSILON ) { return true; } if ( Q_fabs( y - a.y ) > EQUAL_EPSILON ) { return true; } if ( Q_fabs( z - a.z ) > EQUAL_EPSILON ) { return true; } return false; } ID_INLINE idVec3_t idVec3_t::Cross( const idVec3_t &a ) const { return idVec3_t( y * a.z - z * a.y, z * a.x - x * a.z, x * a.y - y * a.x ); } ID_INLINE idVec3_t &idVec3_t::Cross( const idVec3_t &a, const idVec3_t &b ) { x = a.y * b.z - a.z * b.y; y = a.z * b.x - a.x * b.z; z = a.x * b.y - a.y * b.x; return *this; } ID_INLINE float idVec3_t::Length( void ) const { float length; length = x * x + y * y + z * z; return ( float )idSqrt( length ); } ID_INLINE float idVec3_t::Normalize( void ) { float length; float ilength; length = this->Length(); if ( length ) { ilength = 1.0f / length; x *= ilength; y *= ilength; z *= ilength; } return length; } ID_INLINE void idVec3_t::Zero( void ) { x = 0.0f; y = 0.0f; z = 0.0f; } ID_INLINE void idVec3_t::Snap( void ) { x = float( int( x ) ); y = float( int( y ) ); z = float( int( z ) ); } /* ====================== SnapTowards Round a vector to integers for more efficient network transmission, but make sure that it rounds towards a given point rather than blindly truncating. This prevents it from truncating into a wall. ====================== */ ID_INLINE void idVec3_t::SnapTowards( const idVec3_t &to ) { if ( to.x <= x ) { x = float( int( x ) ); } else { x = float( int( x ) + 1 ); } if ( to.y <= y ) { y = float( int( y ) ); } else { y = float( int( y ) + 1 ); } if ( to.z <= z ) { z = float( int( z ) ); } else { z = float( int( z ) + 1 ); } } //=============================================================== class Bounds { public: idVec3_t b[2]; Bounds(); Bounds( const idVec3_t &mins, const idVec3_t &maxs ); void Clear(); void Zero(); float Radius(); // radius from origin, not from center idVec3_t Center(); void AddPoint( const idVec3_t &v ); void AddBounds( const Bounds &bb ); bool IsCleared(); bool ContainsPoint( const idVec3_t &p ); bool IntersectsBounds( const Bounds &b2 ); // touching is NOT intersecting }; extern Bounds boundsZero; ID_INLINE Bounds::Bounds(){ } ID_INLINE bool Bounds::IsCleared() { return b[0][0] > b[1][0]; } ID_INLINE bool Bounds::ContainsPoint( const idVec3_t &p ) { if ( p[0] < b[0][0] || p[1] < b[0][1] || p[2] < b[0][2] || p[0] > b[1][0] || p[1] > b[1][1] || p[2] > b[1][2] ) { return false; } return true; } ID_INLINE bool Bounds::IntersectsBounds( const Bounds &b2 ) { if ( b2.b[1][0] < b[0][0] || b2.b[1][1] < b[0][1] || b2.b[1][2] < b[0][2] || b2.b[0][0] > b[1][0] || b2.b[0][1] > b[1][1] || b2.b[0][2] > b[1][2] ) { return false; } return true; } ID_INLINE Bounds::Bounds( const idVec3_t &mins, const idVec3_t &maxs ) { b[0] = mins; b[1] = maxs; } ID_INLINE idVec3_t Bounds::Center() { return idVec3_t( ( b[1][0] + b[0][0] ) * 0.5f, ( b[1][1] + b[0][1] ) * 0.5f, ( b[1][2] + b[0][2] ) * 0.5f ); } ID_INLINE void Bounds::Clear() { b[0][0] = b[0][1] = b[0][2] = 99999; b[1][0] = b[1][1] = b[1][2] = -99999; } ID_INLINE void Bounds::Zero() { b[0][0] = b[0][1] = b[0][2] = b[1][0] = b[1][1] = b[1][2] = 0; } ID_INLINE void Bounds::AddPoint( const idVec3_t &v ) { if ( v[0] < b[0][0]) { b[0][0] = v[0]; } if ( v[0] > b[1][0]) { b[1][0] = v[0]; } if ( v[1] < b[0][1] ) { b[0][1] = v[1]; } if ( v[1] > b[1][1]) { b[1][1] = v[1]; } if ( v[2] < b[0][2] ) { b[0][2] = v[2]; } if ( v[2] > b[1][2]) { b[1][2] = v[2]; } } ID_INLINE void Bounds::AddBounds( const Bounds &bb ) { if ( bb.b[0][0] < b[0][0]) { b[0][0] = bb.b[0][0]; } if ( bb.b[0][1] < b[0][1]) { b[0][1] = bb.b[0][1]; } if ( bb.b[0][2] < b[0][2]) { b[0][2] = bb.b[0][2]; } if ( bb.b[1][0] > b[1][0]) { b[1][0] = bb.b[1][0]; } if ( bb.b[1][1] > b[1][1]) { b[1][1] = bb.b[1][1]; } if ( bb.b[1][2] > b[1][2]) { b[1][2] = bb.b[1][2]; } } ID_INLINE float Bounds::Radius( ) { int i; float total; float a, aa; total = 0; for (i=0 ; i<3 ; i++) { a = (float)fabs( b[0][i] ); aa = (float)fabs( b[1][i] ); if ( aa > a ) { a = aa; } total += a * a; } return (float)idSqrt( total ); } //=============================================================== class idVec2_t { public: float x; float y; operator float *(); float operator[]( int index ) const; float &operator[]( int index ); }; ID_INLINE float idVec2_t::operator[]( int index ) const { return ( &x )[ index ]; } ID_INLINE float& idVec2_t::operator[]( int index ) { return ( &x )[ index ]; } ID_INLINE idVec2_t::operator float *( void ) { return &x; } class vec4_t : public idVec3_t { public: #ifndef FAT_VEC3 float dist; #endif vec4_t(); ~vec4_t() {}; vec4_t( float x, float y, float z, float dist ); float operator[]( int index ) const; float &operator[]( int index ); }; ID_INLINE vec4_t::vec4_t() {} ID_INLINE vec4_t::vec4_t( float x, float y, float z, float dist ) { this->x = x; this->y = y; this->z = z; this->dist = dist; } ID_INLINE float vec4_t::operator[]( int index ) const { return ( &x )[ index ]; } ID_INLINE float& vec4_t::operator[]( int index ) { return ( &x )[ index ]; } class idVec5_t : public idVec3_t { public: float s; float t; float operator[]( int index ) const; float &operator[]( int index ); }; ID_INLINE float idVec5_t::operator[]( int index ) const { return ( &x )[ index ]; } ID_INLINE float& idVec5_t::operator[]( int index ) { return ( &x )[ index ]; } #endif /* !__MATH_VECTOR_H__ */