ref: 13ca2581f9f18d441ce911e42c2bd93e387cee4d
dir: /code/splines/math_quaternion.h/
/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Foobar; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ #ifndef __MATH_QUATERNION_H__ #define __MATH_QUATERNION_H__ #include <assert.h> #include <math.h> class idVec3_t; class angles_t; class mat3_t; class quat_t { public: float x; float y; float z; float w; quat_t(); quat_t( float x, float y, float z, float w ); friend void toQuat( idVec3_t &src, quat_t &dst ); friend void toQuat( angles_t &src, quat_t &dst ); friend void toQuat( mat3_t &src, quat_t &dst ); float *vec4( void ); float operator[]( int index ) const; float &operator[]( int index ); void set( float x, float y, float z, float w ); void operator=( quat_t a ); friend quat_t operator+( quat_t a, quat_t b ); quat_t &operator+=( quat_t a ); friend quat_t operator-( quat_t a, quat_t b ); quat_t &operator-=( quat_t a ); friend quat_t operator*( quat_t a, float b ); friend quat_t operator*( float a, quat_t b ); quat_t &operator*=( float a ); friend int operator==( quat_t a, quat_t b ); friend int operator!=( quat_t a, quat_t b ); float Length( void ); quat_t &Normalize( void ); quat_t operator-(); }; inline quat_t::quat_t() { } inline quat_t::quat_t( float x, float y, float z, float w ) { this->x = x; this->y = y; this->z = z; this->w = w; } inline float *quat_t::vec4( void ) { return &x; } inline float quat_t::operator[]( int index ) const { assert( ( index >= 0 ) && ( index < 4 ) ); return ( &x )[ index ]; } inline float& quat_t::operator[]( int index ) { assert( ( index >= 0 ) && ( index < 4 ) ); return ( &x )[ index ]; } inline void quat_t::set( float x, float y, float z, float w ) { this->x = x; this->y = y; this->z = z; this->w = w; } inline void quat_t::operator=( quat_t a ) { x = a.x; y = a.y; z = a.z; w = a.w; } inline quat_t operator+( quat_t a, quat_t b ) { return quat_t( a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w ); } inline quat_t& quat_t::operator+=( quat_t a ) { x += a.x; y += a.y; z += a.z; w += a.w; return *this; } inline quat_t operator-( quat_t a, quat_t b ) { return quat_t( a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w ); } inline quat_t& quat_t::operator-=( quat_t a ) { x -= a.x; y -= a.y; z -= a.z; w -= a.w; return *this; } inline quat_t operator*( quat_t a, float b ) { return quat_t( a.x * b, a.y * b, a.z * b, a.w * b ); } inline quat_t operator*( float a, quat_t b ) { return b * a; } inline quat_t& quat_t::operator*=( float a ) { x *= a; y *= a; z *= a; w *= a; return *this; } inline int operator==( quat_t a, quat_t b ) { return ( ( a.x == b.x ) && ( a.y == b.y ) && ( a.z == b.z ) && ( a.w == b.w ) ); } inline int operator!=( quat_t a, quat_t b ) { return ( ( a.x != b.x ) || ( a.y != b.y ) || ( a.z != b.z ) && ( a.w != b.w ) ); } inline float quat_t::Length( void ) { float length; length = x * x + y * y + z * z + w * w; return ( float )sqrt( length ); } inline quat_t& quat_t::Normalize( void ) { float length; float ilength; length = this->Length(); if ( length ) { ilength = 1 / length; x *= ilength; y *= ilength; z *= ilength; w *= ilength; } return *this; } inline quat_t quat_t::operator-() { return quat_t( -x, -y, -z, -w ); } #endif /* !__MATH_QUATERNION_H__ */