shithub: qk1

ref: a53e14793a11a6af0b83bdbd94772c47ee41e44b
dir: /r_part.c/

View raw version
#include "quakedef.h"

#define MAX_PARTICLES			4096	// default max # of particles at one
										//  time
#define ABSOLUTE_MIN_PARTICLES	512		// no fewer than this no matter what's
										//  on the command line

static int ramp1[8] = {0x6f, 0x6d, 0x6b, 0x69, 0x67, 0x65, 0x63, 0x61};
static int ramp2[8] = {0x6f, 0x6e, 0x6d, 0x6c, 0x6b, 0x6a, 0x68, 0x66};
static int ramp3[8] = {0x6d, 0x6b, 6, 5, 4, 3};

particle_t	*active_particles, *free_particles;

static particle_t *particles;
static int r_numparticles;

vec3_t r_pright, r_pup, r_ppn;


void
R_InitParticles(void)
{
	r_numparticles = MAX_PARTICLES;
	particles = Hunk_Alloc(r_numparticles * sizeof *particles);
}

/*
===============
R_EntityParticles
===============
*/
static vec3_t avelocities[NUMVERTEXNORMALS];
static const float beamlength = 16;

void R_EntityParticles (entity_t *ent)
{
	int			i;
	particle_t	*p;
	float		angle;
	float		sp, sy, cp, cy;
	vec3_t		forward;
	float		dist;

	dist = 64;

	if(!avelocities[0][0]){
		for (i=0 ; i<NUMVERTEXNORMALS ; i++){
			avelocities[i][0] = (rand()&255) * 0.01;
			avelocities[i][1] = (rand()&255) * 0.01;
			avelocities[i][2] = (rand()&255) * 0.01;
		}
	}


	for (i=0 ; i<NUMVERTEXNORMALS ; i++)
	{
		angle = cl.time * avelocities[i][0];
		sy = sinf(angle);
		cy = cosf(angle);
		angle = cl.time * avelocities[i][1];
		sp = sinf(angle);
		cp = cosf(angle);

		forward[0] = cp*cy;
		forward[1] = cp*sy;
		forward[2] = -sp;

		if (!free_particles)
			return;
		p = free_particles;
		free_particles = p->next;
		p->next = active_particles;
		active_particles = p;

		p->die = cl.time + 0.01;
		p->color = q1pal[0x6f];
		p->type = pt_explode;

		p->org[0] = ent->origin[0] + r_avertexnormals[i][0]*dist + forward[0]*beamlength;
		p->org[1] = ent->origin[1] + r_avertexnormals[i][1]*dist + forward[1]*beamlength;
		p->org[2] = ent->origin[2] + r_avertexnormals[i][2]*dist + forward[2]*beamlength;
	}
}


/*
===============
R_ClearParticles
===============
*/
void R_ClearParticles (void)
{
	int		i;

	free_particles = &particles[0];
	active_particles = nil;

	for (i=0 ;i<r_numparticles ; i++)
		particles[i].next = &particles[i+1];
	particles[r_numparticles-1].next = nil;
}

/*
===============
R_ParseParticleEffect

Parse an effect out of the server message
===============
*/
void R_ParseParticleEffect (void)
{
	vec3_t		org, dir;
	int			i, count, msgcount, color;

	MSG_ReadVec(cl.protocol, org);
	for (i=0 ; i<3 ; i++)
		dir[i] = MSG_ReadChar () * (1.0/16);
	msgcount = MSG_ReadByte ();
	color = MSG_ReadByte ();
	count = msgcount < 255 ? msgcount : 1024;

	R_RunParticleEffect (org, dir, color, count);
}

/*
===============
R_ParticleExplosion

===============
*/
void R_ParticleExplosion (vec3_t org)
{
	int			i, j;
	particle_t	*p;

	for (i=0 ; i<1024 ; i++)
	{
		if (!free_particles)
			return;
		p = free_particles;
		free_particles = p->next;
		p->next = active_particles;
		active_particles = p;

		p->die = cl.time + 5;
		p->color = q1pal[ramp1[0]];
		p->ramp = rand()&3;
		if (i & 1)
		{
			p->type = pt_explode;
			for (j=0 ; j<3 ; j++)
			{
				p->org[j] = org[j] + ((rand()%32)-16);
				p->vel[j] = (rand()%512)-256;
			}
		}
		else
		{
			p->type = pt_explode2;
			for (j=0 ; j<3 ; j++)
			{
				p->org[j] = org[j] + ((rand()%32)-16);
				p->vel[j] = (rand()%512)-256;
			}
		}
	}
}

/*
===============
R_ParticleExplosion2

===============
*/
void R_ParticleExplosion2 (vec3_t org, int colorStart, int colorLength)
{
	int			i, j;
	particle_t	*p;
	int			colorMod = 0;

	for (i=0; i<512; i++)
	{
		if (!free_particles)
			return;
		p = free_particles;
		free_particles = p->next;
		p->next = active_particles;
		active_particles = p;

		p->die = cl.time + 0.3;
		p->color = q1pal[colorStart + (colorMod % colorLength)];
		colorMod++;

		p->type = pt_blob;
		for (j=0 ; j<3 ; j++)
		{
			p->org[j] = org[j] + ((rand()%32)-16);
			p->vel[j] = (rand()%512)-256;
		}
	}
}

/*
===============
R_BlobExplosion

===============
*/
void R_BlobExplosion (vec3_t org)
{
	int			i, j;
	particle_t	*p;

	for (i=0 ; i<1024 ; i++)
	{
		if (!free_particles)
			return;
		p = free_particles;
		free_particles = p->next;
		p->next = active_particles;
		active_particles = p;

		p->die = cl.time + 1 + (rand()&8)*0.05;

		if (i & 1)
		{
			p->type = pt_blob;
			p->color = q1pal[66 + rand()%6];
			for (j=0 ; j<3 ; j++)
			{
				p->org[j] = org[j] + ((rand()%32)-16);
				p->vel[j] = (rand()%512)-256;
			}
		}
		else
		{
			p->type = pt_blob2;
			p->color = q1pal[150 + rand()%6];
			for (j=0 ; j<3 ; j++)
			{
				p->org[j] = org[j] + ((rand()%32)-16);
				p->vel[j] = (rand()%512)-256;
			}
		}
	}
}

/*
===============
R_RunParticleEffect

===============
*/
void R_RunParticleEffect (vec3_t org, vec3_t dir, int color, int count)
{
	int			i, j;
	particle_t	*p;

	for (i=0 ; i<count ; i++)
	{
		if (!free_particles)
			return;
		p = free_particles;
		free_particles = p->next;
		p->next = active_particles;
		active_particles = p;

		if (count == 1024)
		{	// rocket explosion
			p->die = cl.time + 5;
			p->color = q1pal[ramp1[0]];
			p->ramp = rand()&3;
			if (i & 1)
			{
				p->type = pt_explode;
				for (j=0 ; j<3 ; j++)
				{
					p->org[j] = org[j] + ((rand()%32)-16);
					p->vel[j] = (rand()%512)-256;
				}
			}
			else
			{
				p->type = pt_explode2;
				for (j=0 ; j<3 ; j++)
				{
					p->org[j] = org[j] + ((rand()%32)-16);
					p->vel[j] = (rand()%512)-256;
				}
			}
		}
		else
		{
			p->die = cl.time + 0.1*(rand()%5);
			p->color = q1pal[(color&~7) + (rand()&7)];
			p->type = pt_slowgrav;
			for (j=0 ; j<3 ; j++)
			{
				p->org[j] = org[j] + ((rand()&15)-8);
				p->vel[j] = dir[j]*15;// + (rand()%300)-150;
			}
		}
	}
}


/*
===============
R_LavaSplash

===============
*/
void R_LavaSplash (vec3_t org)
{
	int			i, j, k;
	particle_t	*p;
	float		vel;
	vec3_t		dir;

	for (i=-16 ; i<16 ; i++)
		for (j=-16 ; j<16 ; j++)
			for (k=0 ; k<1 ; k++)
			{
				if (!free_particles)
					return;
				p = free_particles;
				free_particles = p->next;
				p->next = active_particles;
				active_particles = p;

				p->die = cl.time + 2 + (rand()&31) * 0.02;
				p->color = q1pal[224 + (rand()&7)];
				p->type = pt_slowgrav;

				dir[0] = j*8 + (rand()&7);
				dir[1] = i*8 + (rand()&7);
				dir[2] = 256;

				p->org[0] = org[0] + dir[0];
				p->org[1] = org[1] + dir[1];
				p->org[2] = org[2] + (rand()&63);

				VectorNormalize (dir);
				vel = 50 + (rand()&63);
				VectorScale (dir, vel, p->vel);
			}
}

/*
===============
R_TeleportSplash

===============
*/
void R_TeleportSplash (vec3_t org)
{
	int			i, j, k;
	particle_t	*p;
	float		vel;
	vec3_t		dir;

	for (i=-16 ; i<16 ; i+=4)
		for (j=-16 ; j<16 ; j+=4)
			for (k=-24 ; k<32 ; k+=4)
			{
				if (!free_particles)
					return;
				p = free_particles;
				free_particles = p->next;
				p->next = active_particles;
				active_particles = p;

				p->die = cl.time + 0.2 + (rand()&7) * 0.02;
				p->color = q1pal[7 + (rand()&7)];
				p->type = pt_slowgrav;

				dir[0] = j*8;
				dir[1] = i*8;
				dir[2] = k*8;

				p->org[0] = org[0] + i + (rand()&3);
				p->org[1] = org[1] + j + (rand()&3);
				p->org[2] = org[2] + k + (rand()&3);

				VectorNormalize (dir);
				vel = 50 + (rand()&63);
				VectorScale (dir, vel, p->vel);
			}
}

void R_RocketTrail (vec3_t start, vec3_t end, int type)
{
	vec3_t		vec;
	float		len;
	int			j;
	particle_t	*p;
	int			dec;
	static int	tracercount;

	VectorSubtract (end, start, vec);
	len = VectorNormalize (vec);
	if (type < 128)
		dec = 3;
	else
	{
		dec = 1;
		type -= 128;
	}

	while (len > 0)
	{
		len -= dec;

		if (!free_particles)
			return;
		p = free_particles;
		free_particles = p->next;
		p->next = active_particles;
		active_particles = p;

		VectorCopy (vec3_origin, p->vel);
		p->die = cl.time + 2;

		switch (type)
		{
			case 0:	// rocket trail
				p->ramp = (rand()&3);
				p->color = q1pal[ramp3[(int)p->ramp]];
				p->type = pt_fire;
				for (j=0 ; j<3 ; j++)
					p->org[j] = start[j] + ((rand()%6)-3);
				break;

			case 1:	// smoke smoke
				p->ramp = (rand()&3) + 2;
				p->color = q1pal[ramp3[(int)p->ramp]];
				p->type = pt_fire;
				for (j=0 ; j<3 ; j++)
					p->org[j] = start[j] + ((rand()%6)-3);
				break;

			case 2:	// blood
				p->type = pt_grav;
				p->color = q1pal[67 + (rand()&3)];
				for (j=0 ; j<3 ; j++)
					p->org[j] = start[j] + ((rand()%6)-3);
				break;

			case 3:
			case 5:	// tracer
				p->die = cl.time + 0.5;
				p->type = pt_static;
				if (type == 3)
					p->color = q1pal[52 + ((tracercount&4)<<1)];
				else
					p->color = q1pal[230 + ((tracercount&4)<<1)];

				tracercount++;

				VectorCopy (start, p->org);
				if (tracercount & 1)
				{
					p->vel[0] = 30*vec[1];
					p->vel[1] = 30*-vec[0];
				}
				else
				{
					p->vel[0] = 30*-vec[1];
					p->vel[1] = 30*vec[0];
				}
				break;

			case 4:	// slight blood
				p->type = pt_grav;
				p->color = q1pal[67 + (rand()&3)];
				for (j=0 ; j<3 ; j++)
					p->org[j] = start[j] + ((rand()%6)-3);
				len -= 3;
				break;

			case 6:	// voor trail
				p->color = q1pal[9*16 + 8 + (rand()&3)];
				p->type = pt_static;
				p->die = cl.time + 0.3;
				for (j=0 ; j<3 ; j++)
					p->org[j] = start[j] + ((rand()&15)-8);
				break;
		}


		VectorAdd (start, vec, start);
	}
}


/*
===============
R_DrawParticles
===============
*/
extern	cvar_t	sv_gravity;

void R_DrawParticles (void)
{
	particle_t		*p, *kill;
	float			grav;
	int				i;
	float			time2, time3;
	float			time1;
	float			dvel;
	float			frametime;

	VectorScale (r_refdef.view.right, xscaleshrink, r_pright);
	VectorScale (r_refdef.view.up, yscaleshrink, r_pup);
	VectorCopy (r_refdef.view.pn, r_ppn);
	frametime = cl.time - cl.oldtime;
	time3 = frametime * 15;
	time2 = frametime * 10; // 15;
	time1 = frametime * 5;
	grav = frametime * sv_gravity.value * 0.05;
	dvel = 4*frametime;

	for ( ;; )
	{
		kill = active_particles;
		if (kill && kill->die < cl.time)
		{
			active_particles = kill->next;
			kill->next = free_particles;
			free_particles = kill;
			continue;
		}
		break;
	}

	for (p=active_particles ; p ; p=p->next)
	{
		for ( ;; )
		{
			kill = p->next;
			if (kill && kill->die < cl.time)
			{
				p->next = kill->next;
				kill->next = free_particles;
				free_particles = kill;
				continue;
			}
			break;
		}

		D_DrawParticle (p);
		p->org[0] += p->vel[0]*frametime;
		p->org[1] += p->vel[1]*frametime;
		p->org[2] += p->vel[2]*frametime;

		switch (p->type)
		{
		case pt_static:
			break;
		case pt_fire:
			p->ramp += time1;
			if (p->ramp >= 6)
				p->die = -1;
			else
				p->color = q1pal[ramp3[(int)p->ramp]];
			p->vel[2] += grav;
			break;

		case pt_explode:
			p->ramp += time2;
			if (p->ramp >=8)
				p->die = -1;
			else
				p->color = q1pal[ramp1[(int)p->ramp]];
			for (i=0 ; i<3 ; i++)
				p->vel[i] += p->vel[i]*dvel;
			p->vel[2] -= grav;
			break;

		case pt_explode2:
			p->ramp += time3;
			if (p->ramp >=8)
				p->die = -1;
			else
				p->color = q1pal[ramp2[(int)p->ramp]];
			for (i=0 ; i<3 ; i++)
				p->vel[i] -= p->vel[i]*frametime;
			p->vel[2] -= grav;
			break;

		case pt_blob:
			for (i=0 ; i<3 ; i++)
				p->vel[i] += p->vel[i]*dvel;
			p->vel[2] -= grav;
			break;

		case pt_blob2:
			for (i=0 ; i<2 ; i++)
				p->vel[i] -= p->vel[i]*dvel;
			p->vel[2] -= grav;
			break;

		case pt_grav:
		case pt_slowgrav:
			p->vel[2] -= grav;
			break;
		}
	}
}