ref: 94c34b727da415e203ee31d6757a04d35a60afd4
dir: /qw/r_main.c/
#include <u.h> #include <libc.h> #include <stdio.h> #include "quakedef.h" //define PASSAGES void *colormap; vec3_t viewlightvec; alight_t r_viewlighting = {128, 192, viewlightvec}; float r_time1; int r_numallocatededges; qboolean r_drawpolys; qboolean r_drawculledpolys; qboolean r_worldpolysbacktofront; qboolean r_recursiveaffinetriangles = true; int r_pixbytes = 1; float r_aliasuvscale = 1.0; int r_outofsurfaces; int r_outofedges; qboolean r_dowarp, r_dowarpold, r_viewchanged; int numbtofpolys; btofpoly_t *pbtofpolys; mvertex_t *r_pcurrentvertbase; int c_surf; int r_maxsurfsseen, r_maxedgesseen, r_cnumsurfs; qboolean r_surfsonstack; int r_clipflags; byte *r_warpbuffer; byte *r_stack_start; qboolean r_fov_greater_than_90; entity_t r_worldentity; // // view origin // vec3_t vup, base_vup; vec3_t vpn, base_vpn; vec3_t vright, base_vright; vec3_t r_origin; // // screen size info // refdef_t r_refdef; float xcenter, ycenter; float xscale, yscale; float xscaleinv, yscaleinv; float xscaleshrink, yscaleshrink; float aliasxscale, aliasyscale, aliasxcenter, aliasycenter; int screenwidth; float pixelAspect; float screenAspect; float verticalFieldOfView; float xOrigin, yOrigin; mplane_t screenedge[4]; // // refresh flags // int r_framecount = 1; // so frame counts initialized to 0 don't match int r_visframecount; int d_spanpixcount; int r_polycount; int r_drawnpolycount; int r_wholepolycount; int *pfrustum_indexes[4]; int r_frustum_indexes[4*6]; int reinit_surfcache = 1; // if 1, surface cache is currently empty and // must be reinitialized for current cache size mleaf_t *r_viewleaf, *r_oldviewleaf; texture_t *r_notexture_mip; float r_aliastransition, r_resfudge; int d_lightstylevalue[256]; // 8.8 fraction of base light value float dp_time1, dp_time2, db_time1, db_time2, rw_time1, rw_time2; float se_time1, se_time2, de_time1, de_time2, dv_time1, dv_time2; void R_MarkLeaves (void); cvar_t r_draworder = {"r_draworder","0"}; cvar_t r_speeds = {"r_speeds","0"}; cvar_t r_timegraph = {"r_timegraph","0"}; cvar_t r_netgraph = {"r_netgraph","0"}; cvar_t r_zgraph = {"r_zgraph","0"}; cvar_t r_graphheight = {"r_graphheight","15"}; cvar_t r_clearcolor = {"r_clearcolor","2"}; cvar_t r_waterwarp = {"r_waterwarp","1"}; cvar_t r_fullbright = {"r_fullbright","0"}; cvar_t r_drawentities = {"r_drawentities","1"}; cvar_t r_drawviewmodel = {"r_drawviewmodel","1"}; cvar_t r_aliasstats = {"r_polymodelstats","0"}; cvar_t r_dspeeds = {"r_dspeeds","0"}; cvar_t r_drawflat = {"r_drawflat", "0"}; cvar_t r_ambient = {"r_ambient", "0"}; cvar_t r_reportsurfout = {"r_reportsurfout", "0"}; cvar_t r_maxsurfs = {"r_maxsurfs", "0"}; cvar_t r_numsurfs = {"r_numsurfs", "0"}; cvar_t r_reportedgeout = {"r_reportedgeout", "0"}; cvar_t r_maxedges = {"r_maxedges", "0"}; cvar_t r_numedges = {"r_numedges", "0"}; cvar_t r_aliastransbase = {"r_aliastransbase", "200"}; cvar_t r_aliastransadj = {"r_aliastransadj", "100"}; extern cvar_t scr_fov; void CreatePassages (void); void SetVisibilityByPassages (void); void R_NetGraph (void); void R_ZGraph (void); /* ================== R_InitTextures ================== */ void R_InitTextures (void) { int x,y, m; byte *dest; // create a simple checkerboard texture for the default r_notexture_mip = Hunk_AllocName (sizeof(texture_t) + 16*16+8*8+4*4+2*2, "notexture"); r_notexture_mip->width = r_notexture_mip->height = 16; r_notexture_mip->offsets[0] = sizeof(texture_t); r_notexture_mip->offsets[1] = r_notexture_mip->offsets[0] + 16*16; r_notexture_mip->offsets[2] = r_notexture_mip->offsets[1] + 8*8; r_notexture_mip->offsets[3] = r_notexture_mip->offsets[2] + 4*4; for (m=0 ; m<4 ; m++) { dest = (byte *)r_notexture_mip + r_notexture_mip->offsets[m]; for (y=0 ; y< (16>>m) ; y++) for (x=0 ; x< (16>>m) ; x++) { if ( (y< (8>>m) ) ^ (x< (8>>m) ) ) *dest++ = 0; else *dest++ = 0xff; } } } /* =============== R_Init =============== */ void R_Init (void) { int dummy; // get stack position so we can guess if we are going to overflow r_stack_start = (byte *)&dummy; R_InitTurb (); Cmd_AddCommand ("timerefresh", R_TimeRefresh_f); Cmd_AddCommand ("pointfile", R_ReadPointFile_f); Cvar_RegisterVariable (&r_draworder); Cvar_RegisterVariable (&r_speeds); Cvar_RegisterVariable (&r_timegraph); Cvar_RegisterVariable (&r_netgraph); Cvar_RegisterVariable (&r_zgraph); Cvar_RegisterVariable (&r_graphheight); Cvar_RegisterVariable (&r_drawflat); Cvar_RegisterVariable (&r_ambient); Cvar_RegisterVariable (&r_clearcolor); Cvar_RegisterVariable (&r_waterwarp); Cvar_RegisterVariable (&r_fullbright); Cvar_RegisterVariable (&r_drawentities); Cvar_RegisterVariable (&r_drawviewmodel); Cvar_RegisterVariable (&r_aliasstats); Cvar_RegisterVariable (&r_dspeeds); Cvar_RegisterVariable (&r_reportsurfout); Cvar_RegisterVariable (&r_maxsurfs); Cvar_RegisterVariable (&r_numsurfs); Cvar_RegisterVariable (&r_reportedgeout); Cvar_RegisterVariable (&r_maxedges); Cvar_RegisterVariable (&r_numedges); Cvar_RegisterVariable (&r_aliastransbase); Cvar_RegisterVariable (&r_aliastransadj); Cvar_SetValue ("r_maxedges", (float)NUMSTACKEDGES); Cvar_SetValue ("r_maxsurfs", (float)NUMSTACKSURFACES); view_clipplanes[0].leftedge = true; view_clipplanes[1].rightedge = true; view_clipplanes[1].leftedge = view_clipplanes[2].leftedge = view_clipplanes[3].leftedge = false; view_clipplanes[0].rightedge = view_clipplanes[2].rightedge = view_clipplanes[3].rightedge = false; r_refdef.xOrigin = XCENTERING; r_refdef.yOrigin = YCENTERING; R_InitParticles (); D_Init (); } /* =============== R_NewMap =============== */ void R_NewMap (void) { int i; memset (&r_worldentity, 0, sizeof(r_worldentity)); r_worldentity.model = cl.worldmodel; // clear out efrags in case the level hasn't been reloaded // FIXME: is this one short? for (i=0 ; i<cl.worldmodel->numleafs ; i++) cl.worldmodel->leafs[i].efrags = NULL; r_viewleaf = NULL; R_ClearParticles (); r_cnumsurfs = r_maxsurfs.value; if (r_cnumsurfs <= MINSURFACES) r_cnumsurfs = MINSURFACES; if (r_cnumsurfs > NUMSTACKSURFACES) { surfaces = Hunk_AllocName (r_cnumsurfs * sizeof(surf_t), "surfaces"); surface_p = surfaces; surf_max = &surfaces[r_cnumsurfs]; r_surfsonstack = false; // surface 0 doesn't really exist; it's just a dummy because index 0 // is used to indicate no edge attached to surface surfaces--; R_SurfacePatch (); } else { r_surfsonstack = true; } r_maxedgesseen = 0; r_maxsurfsseen = 0; r_numallocatededges = r_maxedges.value; if (r_numallocatededges < MINEDGES) r_numallocatededges = MINEDGES; if (r_numallocatededges <= NUMSTACKEDGES) { auxedges = NULL; } else { auxedges = Hunk_AllocName (r_numallocatededges * sizeof(edge_t), "edges"); } r_dowarpold = false; r_viewchanged = false; } /* =============== R_SetVrect =============== */ void R_SetVrect (vrect_t *pvrectin, vrect_t *pvrect, int lineadj) { int h; float size; qboolean full = false; if (scr_viewsize.value >= 100.0) { size = 100.0; full = true; } else size = scr_viewsize.value; if (cl.intermission) { full = true; size = 100.0; lineadj = 0; } size /= 100.0; if (!cl_sbar.value && full) h = pvrectin->height; else h = pvrectin->height - lineadj; // h = (!cl_sbar.value && size==1.0) ? pvrectin->height : (pvrectin->height - lineadj); // h = pvrectin->height - lineadj; if (full) pvrect->width = pvrectin->width; else pvrect->width = pvrectin->width * size; if (pvrect->width < 96) { size = 96.0 / pvrectin->width; pvrect->width = 96; // min for icons } pvrect->width &= ~7; pvrect->height = pvrectin->height * size; if (cl_sbar.value || !full) { if (pvrect->height > pvrectin->height - lineadj) pvrect->height = pvrectin->height - lineadj; } else if (pvrect->height > pvrectin->height) pvrect->height = pvrectin->height; pvrect->height &= ~1; pvrect->x = (pvrectin->width - pvrect->width)/2; if (full) pvrect->y = 0; else pvrect->y = (h - pvrect->height)/2; } /* =============== R_ViewChanged Called every time the vid structure or r_refdef changes. Guaranteed to be called before the first refresh =============== */ void R_ViewChanged (vrect_t *pvrect, int lineadj, float aspect) { int i; float res_scale; r_viewchanged = true; R_SetVrect (pvrect, &r_refdef.vrect, lineadj); r_refdef.horizontalFieldOfView = 2.0 * tan (r_refdef.fov_x/360*M_PI); r_refdef.fvrectx = (float)r_refdef.vrect.x; r_refdef.fvrectx_adj = (float)r_refdef.vrect.x - 0.5; r_refdef.vrect_x_adj_shift20 = (r_refdef.vrect.x<<20) + (1<<19) - 1; r_refdef.fvrecty = (float)r_refdef.vrect.y; r_refdef.fvrecty_adj = (float)r_refdef.vrect.y - 0.5; r_refdef.vrectright = r_refdef.vrect.x + r_refdef.vrect.width; r_refdef.vrectright_adj_shift20 = (r_refdef.vrectright<<20) + (1<<19) - 1; r_refdef.fvrectright = (float)r_refdef.vrectright; r_refdef.fvrectright_adj = (float)r_refdef.vrectright - 0.5; r_refdef.vrectrightedge = (float)r_refdef.vrectright - 0.99; r_refdef.vrectbottom = r_refdef.vrect.y + r_refdef.vrect.height; r_refdef.fvrectbottom = (float)r_refdef.vrectbottom; r_refdef.fvrectbottom_adj = (float)r_refdef.vrectbottom - 0.5; r_refdef.aliasvrect.x = (int)(r_refdef.vrect.x * r_aliasuvscale); r_refdef.aliasvrect.y = (int)(r_refdef.vrect.y * r_aliasuvscale); r_refdef.aliasvrect.width = (int)(r_refdef.vrect.width * r_aliasuvscale); r_refdef.aliasvrect.height = (int)(r_refdef.vrect.height * r_aliasuvscale); r_refdef.aliasvrectright = r_refdef.aliasvrect.x + r_refdef.aliasvrect.width; r_refdef.aliasvrectbottom = r_refdef.aliasvrect.y + r_refdef.aliasvrect.height; pixelAspect = aspect; xOrigin = r_refdef.xOrigin; yOrigin = r_refdef.yOrigin; screenAspect = r_refdef.vrect.width*pixelAspect / r_refdef.vrect.height; // 320*200 1.0 pixelAspect = 1.6 screenAspect // 320*240 1.0 pixelAspect = 1.3333 screenAspect // proper 320*200 pixelAspect = 0.8333333 verticalFieldOfView = r_refdef.horizontalFieldOfView / screenAspect; // values for perspective projection // if math were exact, the values would range from 0.5 to to range+0.5 // hopefully they wll be in the 0.000001 to range+.999999 and truncate // the polygon rasterization will never render in the first row or column // but will definately render in the [range] row and column, so adjust the // buffer origin to get an exact edge to edge fill xcenter = ((float)r_refdef.vrect.width * XCENTERING) + r_refdef.vrect.x - 0.5; aliasxcenter = xcenter * r_aliasuvscale; ycenter = ((float)r_refdef.vrect.height * YCENTERING) + r_refdef.vrect.y - 0.5; aliasycenter = ycenter * r_aliasuvscale; xscale = r_refdef.vrect.width / r_refdef.horizontalFieldOfView; aliasxscale = xscale * r_aliasuvscale; xscaleinv = 1.0 / xscale; yscale = xscale * pixelAspect; aliasyscale = yscale * r_aliasuvscale; yscaleinv = 1.0 / yscale; xscaleshrink = (r_refdef.vrect.width-6)/r_refdef.horizontalFieldOfView; yscaleshrink = xscaleshrink*pixelAspect; // left side clip screenedge[0].normal[0] = -1.0 / (xOrigin*r_refdef.horizontalFieldOfView); screenedge[0].normal[1] = 0; screenedge[0].normal[2] = 1; screenedge[0].type = PLANE_ANYZ; // right side clip screenedge[1].normal[0] = 1.0 / ((1.0-xOrigin)*r_refdef.horizontalFieldOfView); screenedge[1].normal[1] = 0; screenedge[1].normal[2] = 1; screenedge[1].type = PLANE_ANYZ; // top side clip screenedge[2].normal[0] = 0; screenedge[2].normal[1] = -1.0 / (yOrigin*verticalFieldOfView); screenedge[2].normal[2] = 1; screenedge[2].type = PLANE_ANYZ; // bottom side clip screenedge[3].normal[0] = 0; screenedge[3].normal[1] = 1.0 / ((1.0-yOrigin)*verticalFieldOfView); screenedge[3].normal[2] = 1; screenedge[3].type = PLANE_ANYZ; for (i=0 ; i<4 ; i++) VectorNormalize (screenedge[i].normal); res_scale = sqrt ((double)(r_refdef.vrect.width * r_refdef.vrect.height) / (320.0 * 152.0)) * (2.0 / r_refdef.horizontalFieldOfView); r_aliastransition = r_aliastransbase.value * res_scale; r_resfudge = r_aliastransadj.value * res_scale; if (scr_fov.value <= 90.0) r_fov_greater_than_90 = false; else r_fov_greater_than_90 = true; D_ViewChanged (); } /* =============== R_MarkLeaves =============== */ void R_MarkLeaves (void) { byte *vis; mnode_t *node; int i; if (r_oldviewleaf == r_viewleaf) return; r_visframecount++; r_oldviewleaf = r_viewleaf; vis = Mod_LeafPVS (r_viewleaf, cl.worldmodel); for (i=0 ; i<cl.worldmodel->numleafs ; i++) { if (vis[i>>3] & (1<<(i&7))) { node = (mnode_t *)&cl.worldmodel->leafs[i+1]; do { if (node->visframe == r_visframecount) break; node->visframe = r_visframecount; node = node->parent; } while (node); } } } /* ============= R_DrawEntitiesOnList ============= */ void R_DrawEntitiesOnList (void) { int i, j; int lnum; alight_t lighting; // FIXME: remove and do real lighting float lightvec[3] = {-1, 0, 0}; vec3_t dist; float add; if (!r_drawentities.value) return; for (i=0 ; i<cl_numvisedicts ; i++) { currententity = &cl_visedicts[i]; switch (currententity->model->type) { case mod_sprite: VectorCopy (currententity->origin, r_entorigin); VectorSubtract (r_origin, r_entorigin, modelorg); R_DrawSprite (); break; case mod_alias: VectorCopy (currententity->origin, r_entorigin); VectorSubtract (r_origin, r_entorigin, modelorg); // see if the bounding box lets us trivially reject, also sets // trivial accept status if (R_AliasCheckBBox ()) { j = R_LightPoint (currententity->origin); lighting.ambientlight = j; lighting.shadelight = j; lighting.plightvec = lightvec; for (lnum=0 ; lnum<MAX_DLIGHTS ; lnum++) { if (cl_dlights[lnum].die >= cl.time) { VectorSubtract (currententity->origin, cl_dlights[lnum].origin, dist); add = cl_dlights[lnum].radius - Length(dist); if (add > 0) lighting.ambientlight += add; } } // clamp lighting so it doesn't overbright as much if (lighting.ambientlight > 128) lighting.ambientlight = 128; if (lighting.ambientlight + lighting.shadelight > 192) lighting.shadelight = 192 - lighting.ambientlight; R_AliasDrawModel (&lighting); } break; default: break; } } } /* ============= R_DrawViewModel ============= */ void R_DrawViewModel (void) { // FIXME: remove and do real lighting float lightvec[3] = {-1, 0, 0}; int j; int lnum; vec3_t dist; float add; dlight_t *dl; if (!r_drawviewmodel.value || r_fov_greater_than_90 || !Cam_DrawViewModel()) return; if (cl.stats[STAT_ITEMS] & IT_INVISIBILITY) return; if (cl.stats[STAT_HEALTH] <= 0) return; currententity = &cl.viewent; if (!currententity->model) return; VectorCopy (currententity->origin, r_entorigin); VectorSubtract (r_origin, r_entorigin, modelorg); VectorCopy (vup, viewlightvec); VectorInverse (viewlightvec); j = R_LightPoint (currententity->origin); if (j < 24) j = 24; // allways give some light on gun r_viewlighting.ambientlight = j; r_viewlighting.shadelight = j; // add dynamic lights for (lnum=0 ; lnum<MAX_DLIGHTS ; lnum++) { dl = &cl_dlights[lnum]; if (!dl->radius) continue; if (!dl->radius) continue; if (dl->die < cl.time) continue; VectorSubtract (currententity->origin, dl->origin, dist); add = dl->radius - Length(dist); if (add > 0) r_viewlighting.ambientlight += add; } // clamp lighting so it doesn't overbright as much if (r_viewlighting.ambientlight > 128) r_viewlighting.ambientlight = 128; if (r_viewlighting.ambientlight + r_viewlighting.shadelight > 192) r_viewlighting.shadelight = 192 - r_viewlighting.ambientlight; r_viewlighting.plightvec = lightvec; R_AliasDrawModel (&r_viewlighting); } /* ============= R_BmodelCheckBBox ============= */ int R_BmodelCheckBBox (model_t *clmodel, float *minmaxs) { int i, *pindex, clipflags; vec3_t acceptpt, rejectpt; double d; clipflags = 0; if (currententity->angles[0] || currententity->angles[1] || currententity->angles[2]) { for (i=0 ; i<4 ; i++) { d = DotProduct (currententity->origin, view_clipplanes[i].normal); d -= view_clipplanes[i].dist; if (d <= -clmodel->radius) return BMODEL_FULLY_CLIPPED; if (d <= clmodel->radius) clipflags |= (1<<i); } } else { for (i=0 ; i<4 ; i++) { // generate accept and reject points // FIXME: do with fast look-ups or integer tests based on the sign bit // of the floating point values pindex = pfrustum_indexes[i]; rejectpt[0] = minmaxs[pindex[0]]; rejectpt[1] = minmaxs[pindex[1]]; rejectpt[2] = minmaxs[pindex[2]]; d = DotProduct (rejectpt, view_clipplanes[i].normal); d -= view_clipplanes[i].dist; if (d <= 0) return BMODEL_FULLY_CLIPPED; acceptpt[0] = minmaxs[pindex[3+0]]; acceptpt[1] = minmaxs[pindex[3+1]]; acceptpt[2] = minmaxs[pindex[3+2]]; d = DotProduct (acceptpt, view_clipplanes[i].normal); d -= view_clipplanes[i].dist; if (d <= 0) clipflags |= (1<<i); } } return clipflags; } /* ============= R_DrawBEntitiesOnList ============= */ void R_DrawBEntitiesOnList (void) { int i, j, k, clipflags; vec3_t oldorigin; model_t *clmodel; float minmaxs[6]; if (!r_drawentities.value) return; VectorCopy (modelorg, oldorigin); insubmodel = true; r_dlightframecount = r_framecount; for (i=0 ; i<cl_numvisedicts ; i++) { currententity = &cl_visedicts[i]; switch (currententity->model->type) { case mod_brush: clmodel = currententity->model; // see if the bounding box lets us trivially reject, also sets // trivial accept status for (j=0 ; j<3 ; j++) { minmaxs[j] = currententity->origin[j] + clmodel->mins[j]; minmaxs[3+j] = currententity->origin[j] + clmodel->maxs[j]; } clipflags = R_BmodelCheckBBox (clmodel, minmaxs); if (clipflags != BMODEL_FULLY_CLIPPED) { VectorCopy (currententity->origin, r_entorigin); VectorSubtract (r_origin, r_entorigin, modelorg); // FIXME: is this needed? VectorCopy (modelorg, r_worldmodelorg); r_pcurrentvertbase = clmodel->vertexes; // FIXME: stop transforming twice R_RotateBmodel (); // calculate dynamic lighting for bmodel if it's not an // instanced model if (clmodel->firstmodelsurface != 0) { for (k=0 ; k<MAX_DLIGHTS ; k++) { if ((cl_dlights[k].die < cl.time) || (!cl_dlights[k].radius)) { continue; } R_MarkLights (&cl_dlights[k], 1<<k, clmodel->nodes + clmodel->hulls[0].firstclipnode); } } // if the driver wants polygons, deliver those. Z-buffering is on // at this point, so no clipping to the world tree is needed, just // frustum clipping if (r_drawpolys | r_drawculledpolys) { R_ZDrawSubmodelPolys (clmodel); } else { r_pefragtopnode = NULL; for (j=0 ; j<3 ; j++) { r_emins[j] = minmaxs[j]; r_emaxs[j] = minmaxs[3+j]; } R_SplitEntityOnNode2 (cl.worldmodel->nodes); if (r_pefragtopnode) { currententity->topnode = r_pefragtopnode; if (r_pefragtopnode->contents >= 0) { // not a leaf; has to be clipped to the world BSP r_clipflags = clipflags; R_DrawSolidClippedSubmodelPolygons (clmodel); } else { // falls entirely in one leaf, so we just put all the // edges in the edge list and let 1/z sorting handle // drawing order R_DrawSubmodelPolygons (clmodel, clipflags); } currententity->topnode = NULL; } } // put back world rotation and frustum clipping // FIXME: R_RotateBmodel should just work off base_vxx VectorCopy (base_vpn, vpn); VectorCopy (base_vup, vup); VectorCopy (base_vright, vright); VectorCopy (base_modelorg, modelorg); VectorCopy (oldorigin, modelorg); R_TransformFrustum (); } break; default: break; } } insubmodel = false; } /* ================ R_EdgeDrawing ================ */ void R_EdgeDrawing (void) { edge_t ledges[NUMSTACKEDGES + ((CACHE_SIZE - 1) / sizeof(edge_t)) + 1]; surf_t lsurfs[NUMSTACKSURFACES + ((CACHE_SIZE - 1) / sizeof(surf_t)) + 1]; if (auxedges) { r_edges = auxedges; } else { r_edges = (edge_t *) (((uintptr)&ledges[0] + CACHE_SIZE - 1) & ~(CACHE_SIZE - 1)); } if (r_surfsonstack) { surfaces = (surf_t *) (((uintptr)&lsurfs[0] + CACHE_SIZE - 1) & ~(CACHE_SIZE - 1)); surf_max = &surfaces[r_cnumsurfs]; // surface 0 doesn't really exist; it's just a dummy because index 0 // is used to indicate no edge attached to surface surfaces--; R_SurfacePatch (); } R_BeginEdgeFrame (); if (r_dspeeds.value) { rw_time1 = Sys_DoubleTime (); } R_RenderWorld (); if (r_drawculledpolys) R_ScanEdges (); // only the world can be drawn back to front with no z reads or compares, just // z writes, so have the driver turn z compares on now D_TurnZOn (); if (r_dspeeds.value) { rw_time2 = Sys_DoubleTime (); db_time1 = rw_time2; } R_DrawBEntitiesOnList (); if (r_dspeeds.value) { db_time2 = Sys_DoubleTime (); se_time1 = db_time2; } if (!(r_drawpolys | r_drawculledpolys)) R_ScanEdges (); } /* ================ R_RenderView r_refdef must be set before the first call ================ */ void R_RenderView_ (void) { byte warpbuffer[WARP_WIDTH * WARP_HEIGHT]; r_warpbuffer = warpbuffer; if (r_timegraph.value || r_speeds.value || r_dspeeds.value) r_time1 = Sys_DoubleTime (); R_SetupFrame (); #ifdef PASSAGES SetVisibilityByPassages (); #else R_MarkLeaves (); // done here so we know if we're in water #endif // make FDIV fast. This reduces timing precision after we've been running for a // while, so we don't do it globally. This also sets chop mode, and we do it // here so that setup stuff like the refresh area calculations match what's // done in screen.c Sys_LowFPPrecision (); if (!r_worldentity.model || !cl.worldmodel) Sys_Error ("R_RenderView: NULL worldmodel"); R_EdgeDrawing (); if (r_dspeeds.value) { se_time2 = Sys_DoubleTime (); de_time1 = se_time2; } R_DrawEntitiesOnList (); if (r_dspeeds.value) { de_time2 = Sys_DoubleTime (); dv_time1 = de_time2; } R_DrawViewModel (); if (r_dspeeds.value) { dv_time2 = Sys_DoubleTime (); dp_time1 = Sys_DoubleTime (); } R_DrawParticles (); if (r_dspeeds.value) dp_time2 = Sys_DoubleTime (); if (r_dowarp) D_WarpScreen (); V_SetContentsColor (r_viewleaf->contents); if (r_timegraph.value) R_TimeGraph (); if (r_netgraph.value) R_NetGraph (); if (r_zgraph.value) R_ZGraph (); if (r_aliasstats.value) R_PrintAliasStats (); if (r_speeds.value) R_PrintTimes (); if (r_dspeeds.value) R_PrintDSpeeds (); if (r_reportsurfout.value && r_outofsurfaces) Con_Printf ("Short %d surfaces\n", r_outofsurfaces); if (r_reportedgeout.value && r_outofedges) Con_Printf ("Short roughly %d edges\n", r_outofedges * 2 / 3); // back to high floating-point precision Sys_HighFPPrecision (); } void R_RenderView (void) { int dummy; int delta; delta = (byte *)&dummy - r_stack_start; if (delta < -10000 || delta > 10000) Sys_Error ("R_RenderView: called without enough stack"); if ( Hunk_LowMark() & 3 ) Sys_Error ("Hunk is missaligned"); if((uintptr)&dummy & 3) Sys_Error ("Stack is missaligned"); if((uintptr)&r_warpbuffer & 3) Sys_Error ("Globals are missaligned"); R_RenderView_ (); } /* ================ R_InitTurb ================ */ void R_InitTurb (void) { int i; for (i=0 ; i<nelem(sintable) ; i++) { sintable[i] = AMP + sin(i*3.14159*2/CYCLE)*AMP; intsintable[i] = AMP2 + sin(i*3.14159*2/CYCLE)*AMP2; // AMP2, not 20 } }