ref: 8723be0d01ab4150ed6ca63649a6ec1ddcc06efb
dir: /u/gl_warp.c/
/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // gl_warp.c -- sky and water polygons #include "quakedef.h" extern model_t *loadmodel; int skytexturenum; int solidskytexture; int alphaskytexture; float speedscale; // for top sky and bottom sky msurface_t *warpface; extern cvar_t gl_subdivide_size; void BoundPoly (int numverts, float *verts, vec3_t mins, vec3_t maxs) { int i, j; float *v; mins[0] = mins[1] = mins[2] = 9999; maxs[0] = maxs[1] = maxs[2] = -9999; v = verts; for (i=0 ; i<numverts ; i++) for (j=0 ; j<3 ; j++, v++) { if (*v < mins[j]) mins[j] = *v; if (*v > maxs[j]) maxs[j] = *v; } } void SubdividePolygon (int numverts, float *verts) { int i, j, k; vec3_t mins, maxs; float m; float *v; vec3_t front[64], back[64]; int f, b; float dist[64]; float frac; glpoly_t *poly; float s, t; if (numverts > 60) Sys_Error ("numverts = %i", numverts); BoundPoly (numverts, verts, mins, maxs); for (i=0 ; i<3 ; i++) { m = (mins[i] + maxs[i]) * 0.5; m = gl_subdivide_size.value * floor (m/gl_subdivide_size.value + 0.5); if (maxs[i] - m < 8) continue; if (m - mins[i] < 8) continue; // cut it v = verts + i; for (j=0 ; j<numverts ; j++, v+= 3) dist[j] = *v - m; // wrap cases dist[j] = dist[0]; v-=i; VectorCopy (verts, v); f = b = 0; v = verts; for (j=0 ; j<numverts ; j++, v+= 3) { if (dist[j] >= 0) { VectorCopy (v, front[f]); f++; } if (dist[j] <= 0) { VectorCopy (v, back[b]); b++; } if (dist[j] == 0 || dist[j+1] == 0) continue; if ( (dist[j] > 0) != (dist[j+1] > 0) ) { // clip point frac = dist[j] / (dist[j] - dist[j+1]); for (k=0 ; k<3 ; k++) front[f][k] = back[b][k] = v[k] + frac*(v[3+k] - v[k]); f++; b++; } } SubdividePolygon (f, front[0]); SubdividePolygon (b, back[0]); return; } poly = Hunk_Alloc (sizeof(glpoly_t) + (numverts-4) * VERTEXSIZE*sizeof(float)); poly->next = warpface->polys; warpface->polys = poly; poly->numverts = numverts; for (i=0 ; i<numverts ; i++, verts+= 3) { VectorCopy (verts, poly->verts[i]); s = DotProduct (verts, warpface->texinfo->vecs[0]); t = DotProduct (verts, warpface->texinfo->vecs[1]); poly->verts[i][3] = s; poly->verts[i][4] = t; } } /* ================ GL_SubdivideSurface Breaks a polygon up along axial 64 unit boundaries so that turbulent and sky warps can be done reasonably. ================ */ void GL_SubdivideSurface (msurface_t *fa) { vec3_t verts[64]; int numverts; int i; int lindex; float *vec; texture_t *t; warpface = fa; // // convert edges back to a normal polygon // numverts = 0; for (i=0 ; i<fa->numedges ; i++) { lindex = loadmodel->surfedges[fa->firstedge + i]; if (lindex > 0) vec = loadmodel->vertexes[loadmodel->edges[lindex].v[0]].position; else vec = loadmodel->vertexes[loadmodel->edges[-lindex].v[1]].position; VectorCopy (vec, verts[numverts]); numverts++; } SubdividePolygon (numverts, verts[0]); } //========================================================= // speed up sin calculations - Ed float turbsin[] = { #include "gl_warp_sin.h" }; #define TURBSCALE (256.0 / (2 * M_PI)) /* ============= EmitWaterPolys Does a water warp on the pre-fragmented glpoly_t chain ============= */ void EmitWaterPolys (msurface_t *fa) { glpoly_t *p; float *v; int i; float s, t, os, ot; for (p=fa->polys ; p ; p=p->next) { glBegin (GL_POLYGON); for (i=0,v=p->verts[0] ; i<p->numverts ; i++, v+=VERTEXSIZE) { os = v[3]; ot = v[4]; s = os + turbsin[(int)((ot*0.125+realtime) * TURBSCALE) & 255]; s *= (1.0/64); t = ot + turbsin[(int)((os*0.125+realtime) * TURBSCALE) & 255]; t *= (1.0/64); glTexCoord2f (s, t); glVertex3fv (v); } glEnd (); } } /* ============= EmitSkyPolys ============= */ void EmitSkyPolys (msurface_t *fa) { glpoly_t *p; float *v; int i; float s, t; vec3_t dir; float length; for (p=fa->polys ; p ; p=p->next) { glBegin (GL_POLYGON); for (i=0,v=p->verts[0] ; i<p->numverts ; i++, v+=VERTEXSIZE) { VectorSubtract (v, r_origin, dir); dir[2] *= 3; // flatten the sphere length = dir[0]*dir[0] + dir[1]*dir[1] + dir[2]*dir[2]; length = sqrt (length); length = 6*63/length; dir[0] *= length; dir[1] *= length; s = (speedscale + dir[0]) * (1.0/128); t = (speedscale + dir[1]) * (1.0/128); glTexCoord2f (s, t); glVertex3fv (v); } glEnd (); } } /* =============== EmitBothSkyLayers Does a sky warp on the pre-fragmented glpoly_t chain This will be called for brushmodels, the world will have them chained together. =============== */ void EmitBothSkyLayers (msurface_t *fa) { int i; int lindex; float *vec; GL_DisableMultitexture(); GL_Bind (solidskytexture); speedscale = realtime*8; speedscale -= (int)speedscale & ~127 ; EmitSkyPolys (fa); glEnable (GL_BLEND); GL_Bind (alphaskytexture); speedscale = realtime*16; speedscale -= (int)speedscale & ~127 ; EmitSkyPolys (fa); glDisable (GL_BLEND); } #ifndef QUAKE2 /* ================= R_DrawSkyChain ================= */ void R_DrawSkyChain (msurface_t *s) { msurface_t *fa; GL_DisableMultitexture(); // used when gl_texsort is on GL_Bind(solidskytexture); speedscale = realtime*8; speedscale -= (int)speedscale & ~127 ; for (fa=s ; fa ; fa=fa->texturechain) EmitSkyPolys (fa); glEnable (GL_BLEND); GL_Bind (alphaskytexture); speedscale = realtime*16; speedscale -= (int)speedscale & ~127 ; for (fa=s ; fa ; fa=fa->texturechain) EmitSkyPolys (fa); glDisable (GL_BLEND); } #endif /* ================================================================= Quake 2 environment sky ================================================================= */ #ifdef QUAKE2 #define SKY_TEX 2000 /* ================================================================= PCX Loading ================================================================= */ typedef struct { char manufacturer; char version; char encoding; char bits_per_pixel; unsigned short xmin,ymin,xmax,ymax; unsigned short hres,vres; unsigned char palette[48]; char reserved; char color_planes; unsigned short bytes_per_line; unsigned short palette_type; char filler[58]; unsigned data; // unbounded } pcx_t; byte *pcx_rgb; /* ============ LoadPCX ============ */ void LoadPCX (FILE *f) { pcx_t *pcx, pcxbuf; byte palette[768]; byte *pix; int x, y; int dataByte, runLength; int count; // // parse the PCX file // fread (&pcxbuf, 1, sizeof(pcxbuf), f); pcx = &pcxbuf; if (pcx->manufacturer != 0x0a || pcx->version != 5 || pcx->encoding != 1 || pcx->bits_per_pixel != 8 || pcx->xmax >= 320 || pcx->ymax >= 256) { Con_Printf ("Bad pcx file\n"); return; } // seek to palette fseek (f, -768, SEEK_END); fread (palette, 1, 768, f); fseek (f, sizeof(pcxbuf) - 4, SEEK_SET); count = (pcx->xmax+1) * (pcx->ymax+1); pcx_rgb = malloc( count * 4); for (y=0 ; y<=pcx->ymax ; y++) { pix = pcx_rgb + 4*y*(pcx->xmax+1); for (x=0 ; x<=pcx->ymax ; ) { dataByte = fgetc(f); if((dataByte & 0xC0) == 0xC0) { runLength = dataByte & 0x3F; dataByte = fgetc(f); } else runLength = 1; while(runLength-- > 0) { pix[0] = palette[dataByte*3]; pix[1] = palette[dataByte*3+1]; pix[2] = palette[dataByte*3+2]; pix[3] = 255; pix += 4; x++; } } } } /* ========================================================= TARGA LOADING ========================================================= */ typedef struct _TargaHeader { unsigned char id_length, colormap_type, image_type; unsigned short colormap_index, colormap_length; unsigned char colormap_size; unsigned short x_origin, y_origin, width, height; unsigned char pixel_size, attributes; } TargaHeader; TargaHeader targa_header; byte *targa_rgba; int fgetLittleShort (FILE *f) { byte b1, b2; b1 = fgetc(f); b2 = fgetc(f); return (short)(b1 + b2*256); } int fgetLittleLong (FILE *f) { byte b1, b2, b3, b4; b1 = fgetc(f); b2 = fgetc(f); b3 = fgetc(f); b4 = fgetc(f); return b1 + (b2<<8) + (b3<<16) + (b4<<24); } /* ============= LoadTGA ============= */ void LoadTGA (FILE *fin) { int columns, rows, numPixels; byte *pixbuf; int row, column; targa_header.id_length = fgetc(fin); targa_header.colormap_type = fgetc(fin); targa_header.image_type = fgetc(fin); targa_header.colormap_index = fgetLittleShort(fin); targa_header.colormap_length = fgetLittleShort(fin); targa_header.colormap_size = fgetc(fin); targa_header.x_origin = fgetLittleShort(fin); targa_header.y_origin = fgetLittleShort(fin); targa_header.width = fgetLittleShort(fin); targa_header.height = fgetLittleShort(fin); targa_header.pixel_size = fgetc(fin); targa_header.attributes = fgetc(fin); if (targa_header.image_type!=2 && targa_header.image_type!=10) Sys_Error ("LoadTGA: Only type 2 and 10 targa RGB images supported\n"); if (targa_header.colormap_type !=0 || (targa_header.pixel_size!=32 && targa_header.pixel_size!=24)) Sys_Error ("Texture_LoadTGA: Only 32 or 24 bit images supported (no colormaps)\n"); columns = targa_header.width; rows = targa_header.height; numPixels = columns * rows; targa_rgba = malloc (numPixels*4); if (targa_header.id_length != 0) fseek(fin, targa_header.id_length, SEEK_CUR); // skip TARGA image comment if (targa_header.image_type==2) { // Uncompressed, RGB images for(row=rows-1; row>=0; row--) { pixbuf = targa_rgba + row*columns*4; for(column=0; column<columns; column++) { unsigned char red,green,blue,alphabyte; switch (targa_header.pixel_size) { case 24: blue = getc(fin); green = getc(fin); red = getc(fin); *pixbuf++ = red; *pixbuf++ = green; *pixbuf++ = blue; *pixbuf++ = 255; break; case 32: blue = getc(fin); green = getc(fin); red = getc(fin); alphabyte = getc(fin); *pixbuf++ = red; *pixbuf++ = green; *pixbuf++ = blue; *pixbuf++ = alphabyte; break; } } } } else if (targa_header.image_type==10) { // Runlength encoded RGB images unsigned char red,green,blue,alphabyte,packetHeader,packetSize,j; for(row=rows-1; row>=0; row--) { pixbuf = targa_rgba + row*columns*4; for(column=0; column<columns; ) { packetHeader=getc(fin); packetSize = 1 + (packetHeader & 0x7f); if (packetHeader & 0x80) { // run-length packet switch (targa_header.pixel_size) { case 24: blue = getc(fin); green = getc(fin); red = getc(fin); alphabyte = 255; break; case 32: blue = getc(fin); green = getc(fin); red = getc(fin); alphabyte = getc(fin); break; } for(j=0;j<packetSize;j++) { *pixbuf++=red; *pixbuf++=green; *pixbuf++=blue; *pixbuf++=alphabyte; column++; if (column==columns) { // run spans across rows column=0; if (row>0) row--; else goto breakOut; pixbuf = targa_rgba + row*columns*4; } } } else { // non run-length packet for(j=0;j<packetSize;j++) { switch (targa_header.pixel_size) { case 24: blue = getc(fin); green = getc(fin); red = getc(fin); *pixbuf++ = red; *pixbuf++ = green; *pixbuf++ = blue; *pixbuf++ = 255; break; case 32: blue = getc(fin); green = getc(fin); red = getc(fin); alphabyte = getc(fin); *pixbuf++ = red; *pixbuf++ = green; *pixbuf++ = blue; *pixbuf++ = alphabyte; break; } column++; if (column==columns) { // pixel packet run spans across rows column=0; if (row>0) row--; else goto breakOut; pixbuf = targa_rgba + row*columns*4; } } } } breakOut:; } } fclose(fin); } /* ================== R_LoadSkys ================== */ char *suf[6] = {"rt", "bk", "lf", "ft", "up", "dn"}; void R_LoadSkys (void) { int i; FILE *f; char name[64]; for (i=0 ; i<6 ; i++) { GL_Bind (SKY_TEX + i); sprintf (name, "gfx/env/bkgtst%s.tga", suf[i]); COM_FOpenFile (name, &f); if (!f) { Con_Printf ("Couldn't load %s\n", name); continue; } LoadTGA (f); // LoadPCX (f); glTexImage2D (GL_TEXTURE_2D, 0, gl_solid_format, 256, 256, 0, GL_RGBA, GL_UNSIGNED_BYTE, targa_rgba); // glTexImage2D (GL_TEXTURE_2D, 0, gl_solid_format, 256, 256, 0, GL_RGBA, GL_UNSIGNED_BYTE, pcx_rgb); free (targa_rgba); // free (pcx_rgb); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); } } vec3_t skyclip[6] = { {1,1,0}, {1,-1,0}, {0,-1,1}, {0,1,1}, {1,0,1}, {-1,0,1} }; int c_sky; // 1 = s, 2 = t, 3 = 2048 int st_to_vec[6][3] = { {3,-1,2}, {-3,1,2}, {1,3,2}, {-1,-3,2}, {-2,-1,3}, // 0 degrees yaw, look straight up {2,-1,-3} // look straight down // {-1,2,3}, // {1,2,-3} }; // s = [0]/[2], t = [1]/[2] int vec_to_st[6][3] = { {-2,3,1}, {2,3,-1}, {1,3,2}, {-1,3,-2}, {-2,-1,3}, {-2,1,-3} // {-1,2,3}, // {1,2,-3} }; float skymins[2][6], skymaxs[2][6]; void DrawSkyPolygon (int nump, vec3_t vecs) { int i,j; vec3_t v, av; float s, t, dv; int axis; float *vp; c_sky++; #if 0 glBegin (GL_POLYGON); for (i=0 ; i<nump ; i++, vecs+=3) { VectorAdd(vecs, r_origin, v); glVertex3fv (v); } glEnd(); return; #endif // decide which face it maps to VectorCopy (vec3_origin, v); for (i=0, vp=vecs ; i<nump ; i++, vp+=3) { VectorAdd (vp, v, v); } av[0] = fabs(v[0]); av[1] = fabs(v[1]); av[2] = fabs(v[2]); if (av[0] > av[1] && av[0] > av[2]) { if (v[0] < 0) axis = 1; else axis = 0; } else if (av[1] > av[2] && av[1] > av[0]) { if (v[1] < 0) axis = 3; else axis = 2; } else { if (v[2] < 0) axis = 5; else axis = 4; } // project new texture coords for (i=0 ; i<nump ; i++, vecs+=3) { j = vec_to_st[axis][2]; if (j > 0) dv = vecs[j - 1]; else dv = -vecs[-j - 1]; j = vec_to_st[axis][0]; if (j < 0) s = -vecs[-j -1] / dv; else s = vecs[j-1] / dv; j = vec_to_st[axis][1]; if (j < 0) t = -vecs[-j -1] / dv; else t = vecs[j-1] / dv; if (s < skymins[0][axis]) skymins[0][axis] = s; if (t < skymins[1][axis]) skymins[1][axis] = t; if (s > skymaxs[0][axis]) skymaxs[0][axis] = s; if (t > skymaxs[1][axis]) skymaxs[1][axis] = t; } } #define MAX_CLIP_VERTS 64 void ClipSkyPolygon (int nump, vec3_t vecs, int stage) { float *norm; float *v; qboolean front, back; float d, e; float dists[MAX_CLIP_VERTS]; int sides[MAX_CLIP_VERTS]; vec3_t newv[2][MAX_CLIP_VERTS]; int newc[2]; int i, j; if (nump > MAX_CLIP_VERTS-2) Sys_Error ("ClipSkyPolygon: MAX_CLIP_VERTS"); if (stage == 6) { // fully clipped, so draw it DrawSkyPolygon (nump, vecs); return; } front = back = false; norm = skyclip[stage]; for (i=0, v = vecs ; i<nump ; i++, v+=3) { d = DotProduct (v, norm); if (d > ON_EPSILON) { front = true; sides[i] = SIDE_FRONT; } else if (d < ON_EPSILON) { back = true; sides[i] = SIDE_BACK; } else sides[i] = SIDE_ON; dists[i] = d; } if (!front || !back) { // not clipped ClipSkyPolygon (nump, vecs, stage+1); return; } // clip it sides[i] = sides[0]; dists[i] = dists[0]; VectorCopy (vecs, (vecs+(i*3)) ); newc[0] = newc[1] = 0; for (i=0, v = vecs ; i<nump ; i++, v+=3) { switch (sides[i]) { case SIDE_FRONT: VectorCopy (v, newv[0][newc[0]]); newc[0]++; break; case SIDE_BACK: VectorCopy (v, newv[1][newc[1]]); newc[1]++; break; case SIDE_ON: VectorCopy (v, newv[0][newc[0]]); newc[0]++; VectorCopy (v, newv[1][newc[1]]); newc[1]++; break; } if (sides[i] == SIDE_ON || sides[i+1] == SIDE_ON || sides[i+1] == sides[i]) continue; d = dists[i] / (dists[i] - dists[i+1]); for (j=0 ; j<3 ; j++) { e = v[j] + d*(v[j+3] - v[j]); newv[0][newc[0]][j] = e; newv[1][newc[1]][j] = e; } newc[0]++; newc[1]++; } // continue ClipSkyPolygon (newc[0], newv[0][0], stage+1); ClipSkyPolygon (newc[1], newv[1][0], stage+1); } /* ================= R_DrawSkyChain ================= */ void R_DrawSkyChain (msurface_t *s) { msurface_t *fa; int i; vec3_t verts[MAX_CLIP_VERTS]; glpoly_t *p; c_sky = 0; GL_Bind(solidskytexture); // calculate vertex values for sky box for (fa=s ; fa ; fa=fa->texturechain) { for (p=fa->polys ; p ; p=p->next) { for (i=0 ; i<p->numverts ; i++) { VectorSubtract (p->verts[i], r_origin, verts[i]); } ClipSkyPolygon (p->numverts, verts[0], 0); } } } /* ============== R_ClearSkyBox ============== */ void R_ClearSkyBox (void) { int i; for (i=0 ; i<6 ; i++) { skymins[0][i] = skymins[1][i] = 9999; skymaxs[0][i] = skymaxs[1][i] = -9999; } } void MakeSkyVec (float s, float t, int axis) { vec3_t v, b; int j, k; b[0] = s*2048; b[1] = t*2048; b[2] = 2048; for (j=0 ; j<3 ; j++) { k = st_to_vec[axis][j]; if (k < 0) v[j] = -b[-k - 1]; else v[j] = b[k - 1]; v[j] += r_origin[j]; } // avoid bilerp seam s = (s+1)*0.5; t = (t+1)*0.5; if (s < 1.0/512) s = 1.0/512; else if (s > 511.0/512) s = 511.0/512; if (t < 1.0/512) t = 1.0/512; else if (t > 511.0/512) t = 511.0/512; t = 1.0 - t; glTexCoord2f (s, t); glVertex3fv (v); } /* ============== R_DrawSkyBox ============== */ int skytexorder[6] = {0,2,1,3,4,5}; void R_DrawSkyBox (void) { int i, j, k; vec3_t v; float s, t; #if 0 glEnable (GL_BLEND); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glColor4f (1,1,1,0.5); glDisable (GL_DEPTH_TEST); #endif for (i=0 ; i<6 ; i++) { if (skymins[0][i] >= skymaxs[0][i] || skymins[1][i] >= skymaxs[1][i]) continue; GL_Bind (SKY_TEX+skytexorder[i]); #if 0 skymins[0][i] = -1; skymins[1][i] = -1; skymaxs[0][i] = 1; skymaxs[1][i] = 1; #endif glBegin (GL_QUADS); MakeSkyVec (skymins[0][i], skymins[1][i], i); MakeSkyVec (skymins[0][i], skymaxs[1][i], i); MakeSkyVec (skymaxs[0][i], skymaxs[1][i], i); MakeSkyVec (skymaxs[0][i], skymins[1][i], i); glEnd (); } #if 0 glDisable (GL_BLEND); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); glColor4f (1,1,1,0.5); glEnable (GL_DEPTH_TEST); #endif } #endif //=============================================================== /* ============= R_InitSky A sky texture is 256*128, with the right side being a masked overlay ============== */ void R_InitSky (texture_t *mt) { int i, j, p; byte *src; unsigned trans[128*128]; unsigned transpix; int r, g, b; unsigned *rgba; extern int skytexturenum; src = (byte *)mt + mt->offsets[0]; // make an average value for the back to avoid // a fringe on the top level r = g = b = 0; for (i=0 ; i<128 ; i++) for (j=0 ; j<128 ; j++) { p = src[i*256 + j + 128]; rgba = &d_8to24table[p]; trans[(i*128) + j] = *rgba; r += ((byte *)rgba)[0]; g += ((byte *)rgba)[1]; b += ((byte *)rgba)[2]; } ((byte *)&transpix)[0] = r/(128*128); ((byte *)&transpix)[1] = g/(128*128); ((byte *)&transpix)[2] = b/(128*128); ((byte *)&transpix)[3] = 0; if (!solidskytexture) solidskytexture = texture_extension_number++; GL_Bind (solidskytexture ); glTexImage2D (GL_TEXTURE_2D, 0, gl_solid_format, 128, 128, 0, GL_RGBA, GL_UNSIGNED_BYTE, trans); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); for (i=0 ; i<128 ; i++) for (j=0 ; j<128 ; j++) { p = src[i*256 + j]; if (p == 0) trans[(i*128) + j] = transpix; else trans[(i*128) + j] = d_8to24table[p]; } if (!alphaskytexture) alphaskytexture = texture_extension_number++; GL_Bind(alphaskytexture); glTexImage2D (GL_TEXTURE_2D, 0, gl_alpha_format, 128, 128, 0, GL_RGBA, GL_UNSIGNED_BYTE, trans); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); }