shithub: qk1

ref: 3ba533fb9d5e013768813983fc0a4464f4ba13ac
dir: qk1/qw/sv_phys.c

View raw version
#include <u.h>
#include <libc.h>
#include <stdio.h>
#include "quakedef.h"

/*
pushmove objects do not obey gravity, and do not interact with each other or trigger fields, but block normal movement and push normal objects when they move.

onground is set for toss objects when they come to a complete rest.  it is set for steping or walking objects 

doors, plats, etc are SOLID_BSP, and MOVETYPE_PUSH
bonus items are SOLID_TRIGGER touch, and MOVETYPE_TOSS
corpses are SOLID_NOT and MOVETYPE_TOSS
crates are SOLID_BBOX and MOVETYPE_TOSS
walking monsters are SOLID_SLIDEBOX and MOVETYPE_STEP
flying/floating monsters are SOLID_SLIDEBOX and MOVETYPE_FLY

solid_edge items only clip against bsp models.
*/

cvar_t	sv_maxvelocity = {"sv_maxvelocity","2000"}; 

cvar_t	sv_gravity			 = { "sv_gravity", "800"};    
cvar_t	sv_stopspeed		 = { "sv_stopspeed", "100"};    
cvar_t	sv_maxspeed			 = { "sv_maxspeed", "320"};    
cvar_t	sv_spectatormaxspeed = { "sv_spectatormaxspeed", "500"};
cvar_t	sv_accelerate		 = { "sv_accelerate", "10"};     
cvar_t	sv_airaccelerate	 = { "sv_airaccelerate", "0.7"};    
cvar_t	sv_wateraccelerate	 = { "sv_wateraccelerate", "10"};     
cvar_t	sv_friction			 = { "sv_friction", "4"};      
cvar_t	sv_waterfriction	 = { "sv_waterfriction", "4"};      


#define	MOVE_EPSILON	0.01

void SV_Physics_Toss (edict_t *ent);

/*
================
SV_CheckAllEnts
================
*/
void SV_CheckAllEnts (void)
{
	int			e;
	edict_t		*check;

// see if any solid entities are inside the final position
	check = NEXT_EDICT(sv.edicts);
	for (e=1 ; e<sv.num_edicts ; e++, check = NEXT_EDICT(check))
	{
		if (check->free)
			continue;
		if (check->v.movetype == MOVETYPE_PUSH
		|| check->v.movetype == MOVETYPE_NONE
		|| check->v.movetype == MOVETYPE_NOCLIP)
			continue;

		if (SV_TestEntityPosition (check))
			Con_Printf ("entity in invalid position\n");
	}
}

/*
================
SV_CheckVelocity
================
*/
void SV_CheckVelocity (edict_t *ent)
{
	int		i;

//
// bound velocity
//
	for (i=0 ; i<3 ; i++)
	{
		if (IS_NAN(ent->v.velocity[i]))
		{
			Con_Printf ("Got a NaN velocity on %s\n", PR_GetString(ent->v.classname));
			ent->v.velocity[i] = 0;
		}
		if (IS_NAN(ent->v.origin[i]))
		{
			Con_Printf ("Got a NaN origin on %s\n", PR_GetString(ent->v.classname));
			ent->v.origin[i] = 0;
		}
		if (ent->v.velocity[i] > sv_maxvelocity.value)
			ent->v.velocity[i] = sv_maxvelocity.value;
		else if (ent->v.velocity[i] < -sv_maxvelocity.value)
			ent->v.velocity[i] = -sv_maxvelocity.value;
	}
}

/*
=============
SV_RunThink

Runs thinking code if time.  There is some play in the exact time the think
function will be called, because it is called before any movement is done
in a frame.  Not used for pushmove objects, because they must be exact.
Returns false if the entity removed itself.
=============
*/
qboolean SV_RunThink (edict_t *ent)
{
	float	thinktime;

	do
	{
		thinktime = ent->v.nextthink;
		if (thinktime <= 0)
			return true;
		if (thinktime > sv.time + host_frametime)
			return true;
		
		if (thinktime < sv.time)
			thinktime = sv.time;	// don't let things stay in the past.
									// it is possible to start that way
									// by a trigger with a local time.
		ent->v.nextthink = 0;
		pr_global_struct->time = thinktime;
		pr_global_struct->self = EDICT_TO_PROG(ent);
		pr_global_struct->other = EDICT_TO_PROG(sv.edicts);
		PR_ExecuteProgram (ent->v.think);

		if (ent->free)
			return false;
	} while (1);
}

/*
==================
SV_Impact

Two entities have touched, so run their touch functions
==================
*/
void SV_Impact (edict_t *e1, edict_t *e2)
{
	int		old_self, old_other;
	
	old_self = pr_global_struct->self;
	old_other = pr_global_struct->other;
	
	pr_global_struct->time = sv.time;
	if (e1->v.touch && e1->v.solid != SOLID_NOT)
	{
		pr_global_struct->self = EDICT_TO_PROG(e1);
		pr_global_struct->other = EDICT_TO_PROG(e2);
		PR_ExecuteProgram (e1->v.touch);
	}
	
	if (e2->v.touch && e2->v.solid != SOLID_NOT)
	{
		pr_global_struct->self = EDICT_TO_PROG(e2);
		pr_global_struct->other = EDICT_TO_PROG(e1);
		PR_ExecuteProgram (e2->v.touch);
	}

	pr_global_struct->self = old_self;
	pr_global_struct->other = old_other;
}


/*
==================
ClipVelocity

Slide off of the impacting object
returns the blocked flags (1 = floor, 2 = step / wall)
==================
*/
#define	STOP_EPSILON	0.1

int ClipVelocity (vec3_t in, vec3_t normal, vec3_t out, float overbounce)
{
	float	backoff;
	float	change;
	int		i, blocked;
	
	blocked = 0;
	if (normal[2] > 0)
		blocked |= 1;		// floor
	if (!normal[2])
		blocked |= 2;		// step
	
	backoff = DotProduct (in, normal) * overbounce;

	for (i=0 ; i<3 ; i++)
	{
		change = normal[i]*backoff;
		out[i] = in[i] - change;
		if (out[i] > -STOP_EPSILON && out[i] < STOP_EPSILON)
			out[i] = 0;
	}
	
	return blocked;
}


/*
============
SV_FlyMove

The basic solid body movement clip that slides along multiple planes
Returns the clipflags if the velocity was modified (hit something solid)
1 = floor
2 = wall / step
4 = dead stop
If steptrace is not NULL, the trace of any vertical wall hit will be stored
============
*/
#define	MAX_CLIP_PLANES	5
int SV_FlyMove (edict_t *ent, float time, trace_t *steptrace)
{
	int			bumpcount, numbumps;
	vec3_t		dir;
	float		d;
	int			numplanes;
	vec3_t		planes[MAX_CLIP_PLANES];
	vec3_t		primal_velocity, original_velocity, new_velocity;
	int			i, j;
	trace_t		trace;
	vec3_t		end;
	float		time_left;
	int			blocked;
	
	numbumps = 4;
	
	blocked = 0;
	VectorCopy (ent->v.velocity, original_velocity);
	VectorCopy (ent->v.velocity, primal_velocity);
	numplanes = 0;
	
	time_left = time;

	for (bumpcount=0 ; bumpcount<numbumps ; bumpcount++)
	{
		for (i=0 ; i<3 ; i++)
			end[i] = ent->v.origin[i] + time_left * ent->v.velocity[i];

		trace = SV_Move (ent->v.origin, ent->v.mins, ent->v.maxs, end, false, ent);

		if (trace.allsolid)
		{	// entity is trapped in another solid
			VectorCopy (vec3_origin, ent->v.velocity);
			return 3;
		}

		if (trace.fraction > 0)
		{	// actually covered some distance
			VectorCopy (trace.endpos, ent->v.origin);
			VectorCopy (ent->v.velocity, original_velocity);
			numplanes = 0;
		}

		if (trace.fraction == 1)
			 break;		// moved the entire distance

		if (!trace.ent)
			SV_Error ("SV_FlyMove: !trace.ent");

		if (trace.plane.normal[2] > 0.7)
		{
			blocked |= 1;		// floor
			if (trace.ent->v.solid == SOLID_BSP)
			{
				ent->v.flags =	(int)ent->v.flags | FL_ONGROUND;
				ent->v.groundentity = EDICT_TO_PROG(trace.ent);
			}
		}
		if (!trace.plane.normal[2])
		{
			blocked |= 2;		// step
			if (steptrace)
				*steptrace = trace;	// save for player extrafriction
		}

//
// run the impact function
//
		SV_Impact (ent, trace.ent);
		if (ent->free)
			break;		// removed by the impact function

		
		time_left -= time_left * trace.fraction;
		
	// cliped to another plane
		if (numplanes >= MAX_CLIP_PLANES)
		{	// this shouldn't really happen
			VectorCopy (vec3_origin, ent->v.velocity);
			return 3;
		}

		VectorCopy (trace.plane.normal, planes[numplanes]);
		numplanes++;

//
// modify original_velocity so it parallels all of the clip planes
//
		for (i=0 ; i<numplanes ; i++)
		{
			ClipVelocity (original_velocity, planes[i], new_velocity, 1);
			for (j=0 ; j<numplanes ; j++)
				if (j != i)
				{
					if (DotProduct (new_velocity, planes[j]) < 0)
						break;	// not ok
				}
			if (j == numplanes)
				break;
		}
		
		if (i != numplanes)
		{	// go along this plane
			VectorCopy (new_velocity, ent->v.velocity);
		}
		else
		{	// go along the crease
			if (numplanes != 2)
			{
//				Con_Printf ("clip velocity, numplanes == %i\n",numplanes);
				VectorCopy (vec3_origin, ent->v.velocity);
				return 7;
			}
			CrossProduct (planes[0], planes[1], dir);
			d = DotProduct (dir, ent->v.velocity);
			VectorScale (dir, d, ent->v.velocity);
		}

//
// if original velocity is against the original velocity, stop dead
// to avoid tiny occilations in sloping corners
//
		if (DotProduct (ent->v.velocity, primal_velocity) <= 0)
		{
			VectorCopy (vec3_origin, ent->v.velocity);
			return blocked;
		}
	}

	return blocked;
}


/*
============
SV_AddGravity

============
*/
void SV_AddGravity (edict_t *ent, float scale)
{
	ent->v.velocity[2] -= scale * movevars.gravity * host_frametime;
}

/*
===============================================================================

PUSHMOVE

===============================================================================
*/

/*
============
SV_PushEntity

Does not change the entities velocity at all
============
*/
trace_t SV_PushEntity (edict_t *ent, vec3_t push)
{
	trace_t	trace;
	vec3_t	end;
		
	VectorAdd (ent->v.origin, push, end);

	if (ent->v.movetype == MOVETYPE_FLYMISSILE)
		trace = SV_Move (ent->v.origin, ent->v.mins, ent->v.maxs, end, MOVE_MISSILE, ent);
	else if (ent->v.solid == SOLID_TRIGGER || ent->v.solid == SOLID_NOT)
	// only clip against bmodels
		trace = SV_Move (ent->v.origin, ent->v.mins, ent->v.maxs, end, MOVE_NOMONSTERS, ent);
	else
		trace = SV_Move (ent->v.origin, ent->v.mins, ent->v.maxs, end, MOVE_NORMAL, ent);
	
	VectorCopy (trace.endpos, ent->v.origin);
	SV_LinkEdict (ent, true);

	if (trace.ent)
		SV_Impact (ent, trace.ent);		

	return trace;
}					


/*
============
SV_Push

============
*/
qboolean SV_Push (edict_t *pusher, vec3_t move)
{
	int			i, e;
	edict_t		*check, *block;
	vec3_t		mins, maxs;
	vec3_t		pushorig;
	int			num_moved;
	edict_t		*moved_edict[MAX_EDICTS];
	vec3_t		moved_from[MAX_EDICTS];

	for (i=0 ; i<3 ; i++)
	{
		mins[i] = pusher->v.absmin[i] + move[i];
		maxs[i] = pusher->v.absmax[i] + move[i];
	}

	VectorCopy (pusher->v.origin, pushorig);
	
// move the pusher to it's final position

	VectorAdd (pusher->v.origin, move, pusher->v.origin);
	SV_LinkEdict (pusher, false);

// see if any solid entities are inside the final position
	num_moved = 0;
	check = NEXT_EDICT(sv.edicts);
	for (e=1 ; e<sv.num_edicts ; e++, check = NEXT_EDICT(check))
	{
		if (check->free)
			continue;
		if (check->v.movetype == MOVETYPE_PUSH
		|| check->v.movetype == MOVETYPE_NONE
		|| check->v.movetype == MOVETYPE_NOCLIP)
			continue;

		pusher->v.solid = SOLID_NOT;
		block = SV_TestEntityPosition (check);
		pusher->v.solid = SOLID_BSP;
		if (block)
			continue;

	// if the entity is standing on the pusher, it will definately be moved
		if ( ! ( ((int)check->v.flags & FL_ONGROUND)
		&& PROG_TO_EDICT(check->v.groundentity) == pusher) )
		{
			if ( check->v.absmin[0] >= maxs[0]
			|| check->v.absmin[1] >= maxs[1]
			|| check->v.absmin[2] >= maxs[2]
			|| check->v.absmax[0] <= mins[0]
			|| check->v.absmax[1] <= mins[1]
			|| check->v.absmax[2] <= mins[2] )
				continue;

		// see if the ent's bbox is inside the pusher's final position
			if (!SV_TestEntityPosition (check))
				continue;
		}

		VectorCopy (check->v.origin, moved_from[num_moved]);
		moved_edict[num_moved] = check;
		num_moved++;

		// try moving the contacted entity 
		VectorAdd (check->v.origin, move, check->v.origin);
		block = SV_TestEntityPosition (check);
		if (!block)
		{	// pushed ok
			SV_LinkEdict (check, false);
			continue;
		}

		// if it is ok to leave in the old position, do it
		VectorSubtract (check->v.origin, move, check->v.origin);
		block = SV_TestEntityPosition (check);
		if (!block)
		{
			num_moved--;
			continue;
		}

	// if it is still inside the pusher, block
		if (check->v.mins[0] == check->v.maxs[0])
		{
			SV_LinkEdict (check, false);
			continue;
		}
		if (check->v.solid == SOLID_NOT || check->v.solid == SOLID_TRIGGER)
		{	// corpse
			check->v.mins[0] = check->v.mins[1] = 0;
			VectorCopy (check->v.mins, check->v.maxs);
			SV_LinkEdict (check, false);
			continue;
		}
		
		VectorCopy (pushorig, pusher->v.origin);
		SV_LinkEdict (pusher, false);

		// if the pusher has a "blocked" function, call it
		// otherwise, just stay in place until the obstacle is gone
		if (pusher->v.blocked)
		{
			pr_global_struct->self = EDICT_TO_PROG(pusher);
			pr_global_struct->other = EDICT_TO_PROG(check);
			PR_ExecuteProgram (pusher->v.blocked);
		}
		
	// move back any entities we already moved
		for (i=0 ; i<num_moved ; i++)
		{
			VectorCopy (moved_from[i], moved_edict[i]->v.origin);
			SV_LinkEdict (moved_edict[i], false);
		}
		return false;
	}

	return true;
}

/*
============
SV_PushMove

============
*/
void SV_PushMove (edict_t *pusher, float movetime)
{
	int			i;
	vec3_t		move;

	if (!pusher->v.velocity[0] && !pusher->v.velocity[1] && !pusher->v.velocity[2])
	{
		pusher->v.ltime += movetime;
		return;
	}

	for (i=0 ; i<3 ; i++)
		move[i] = pusher->v.velocity[i] * movetime;

	if (SV_Push (pusher, move))
		pusher->v.ltime += movetime;
}


/*
================
SV_Physics_Pusher

================
*/
void SV_Physics_Pusher (edict_t *ent)
{
	float	thinktime;
	float	oldltime;
	float	movetime;
vec3_t oldorg, move;
float	l;

	oldltime = ent->v.ltime;
	
	thinktime = ent->v.nextthink;
	if (thinktime < ent->v.ltime + host_frametime)
	{
		movetime = thinktime - ent->v.ltime;
		if (movetime < 0)
			movetime = 0;
	}
	else
		movetime = host_frametime;

	if (movetime)
	{
		SV_PushMove (ent, movetime);	// advances ent->v.ltime if not blocked
	}
		
	if (thinktime > oldltime && thinktime <= ent->v.ltime)
	{
VectorCopy (ent->v.origin, oldorg);
		ent->v.nextthink = 0;
		pr_global_struct->time = sv.time;
		pr_global_struct->self = EDICT_TO_PROG(ent);
		pr_global_struct->other = EDICT_TO_PROG(sv.edicts);
		PR_ExecuteProgram (ent->v.think);
		if (ent->free)
			return;
VectorSubtract (ent->v.origin, oldorg, move);

l = Length(move);
if (l > 1.0/64)
{
//	Con_Printf ("**** snap: %f\n", Length (l));
	VectorCopy (oldorg, ent->v.origin);
	SV_Push (ent, move);
}

	}

}


/*
=============
SV_Physics_None

Non moving objects can only think
=============
*/
void SV_Physics_None (edict_t *ent)
{
// regular thinking
	SV_RunThink (ent);
}

/*
=============
SV_Physics_Noclip

A moving object that doesn't obey physics
=============
*/
void SV_Physics_Noclip (edict_t *ent)
{
// regular thinking
	if (!SV_RunThink (ent))
		return;
	
	VectorMA (ent->v.angles, host_frametime, ent->v.avelocity, ent->v.angles);
	VectorMA (ent->v.origin, host_frametime, ent->v.velocity, ent->v.origin);

	SV_LinkEdict (ent, false);
}

/*
==============================================================================

TOSS / BOUNCE

==============================================================================
*/

/*
=============
SV_CheckWaterTransition

=============
*/
void SV_CheckWaterTransition (edict_t *ent)
{
	int		cont;

	cont = SV_PointContents (ent->v.origin);
	if (!ent->v.watertype)
	{	// just spawned here
		ent->v.watertype = cont;
		ent->v.waterlevel = 1;
		return;
	}
	
	if (cont <= CONTENTS_WATER)
	{
		if (ent->v.watertype == CONTENTS_EMPTY)
		{	// just crossed into water
			SV_StartSound (ent, 0, "misc/h2ohit1.wav", 255, 1);
		}		
		ent->v.watertype = cont;
		ent->v.waterlevel = 1;
	}
	else
	{
		if (ent->v.watertype != CONTENTS_EMPTY)
		{	// just crossed into water
			SV_StartSound (ent, 0, "misc/h2ohit1.wav", 255, 1);
		}		
		ent->v.watertype = CONTENTS_EMPTY;
		ent->v.waterlevel = cont;
	}
}

/*
=============
SV_Physics_Toss

Toss, bounce, and fly movement.  When onground, do nothing.
=============
*/
void SV_Physics_Toss (edict_t *ent)
{
	trace_t	trace;
	vec3_t	move;
	float	backoff;

// regular thinking
	if (!SV_RunThink (ent))
		return;

	if (ent->v.velocity[2] > 0)
		ent->v.flags = (int)ent->v.flags & ~FL_ONGROUND;

// if onground, return without moving
	if ( ((int)ent->v.flags & FL_ONGROUND) )
		return;

	SV_CheckVelocity (ent);

// add gravity
	if (ent->v.movetype != MOVETYPE_FLY
	&& ent->v.movetype != MOVETYPE_FLYMISSILE)
		SV_AddGravity (ent, 1.0);

// move angles
	VectorMA (ent->v.angles, host_frametime, ent->v.avelocity, ent->v.angles);

// move origin
	VectorScale (ent->v.velocity, host_frametime, move);
	trace = SV_PushEntity (ent, move);
	if (trace.fraction == 1)
		return;
	if (ent->free)
		return;
	
	if (ent->v.movetype == MOVETYPE_BOUNCE)
		backoff = 1.5;
	else
		backoff = 1;

	ClipVelocity (ent->v.velocity, trace.plane.normal, ent->v.velocity, backoff);

// stop if on ground
	if (trace.plane.normal[2] > 0.7)
	{		
		if (ent->v.velocity[2] < 60 || ent->v.movetype != MOVETYPE_BOUNCE )
		{
			ent->v.flags = (int)ent->v.flags | FL_ONGROUND;
			ent->v.groundentity = EDICT_TO_PROG(trace.ent);
			VectorCopy (vec3_origin, ent->v.velocity);
			VectorCopy (vec3_origin, ent->v.avelocity);
		}
	}
	
// check for in water
	SV_CheckWaterTransition (ent);
}

/*
===============================================================================

STEPPING MOVEMENT

===============================================================================
*/

/*
=============
SV_Physics_Step

Monsters freefall when they don't have a ground entity, otherwise
all movement is done with discrete steps.

This is also used for objects that have become still on the ground, but
will fall if the floor is pulled out from under them.
FIXME: is this true?
=============
*/
void SV_Physics_Step (edict_t *ent)
{
	qboolean	hitsound;

// frefall if not onground
	if ( ! ((int)ent->v.flags & (FL_ONGROUND | FL_FLY | FL_SWIM) ) )
	{
		if (ent->v.velocity[2] < movevars.gravity*-0.1)
			hitsound = true;
		else
			hitsound = false;

		SV_AddGravity (ent, 1.0);
		SV_CheckVelocity (ent);
		SV_FlyMove (ent, host_frametime, NULL);
		SV_LinkEdict (ent, true);

		if ( (int)ent->v.flags & FL_ONGROUND )	// just hit ground
		{
			if (hitsound)
				SV_StartSound (ent, 0, "demon/dland2.wav", 255, 1);
		}
	}

// regular thinking
	SV_RunThink (ent);
	
	SV_CheckWaterTransition (ent);
}

//============================================================================

void SV_ProgStartFrame (void)
{
// let the progs know that a new frame has started
	pr_global_struct->self = EDICT_TO_PROG(sv.edicts);
	pr_global_struct->other = EDICT_TO_PROG(sv.edicts);
	pr_global_struct->time = sv.time;
	PR_ExecuteProgram (pr_global_struct->StartFrame);
}

/*
================
SV_RunEntity

================
*/
void SV_RunEntity (edict_t *ent)
{
	if (ent->v.lastruntime == (float)realtime)
		return;
	ent->v.lastruntime = (float)realtime;

	switch ( (int)ent->v.movetype)
	{
	case MOVETYPE_PUSH:
		SV_Physics_Pusher (ent);
		break;
	case MOVETYPE_NONE:
		SV_Physics_None (ent);
		break;
	case MOVETYPE_NOCLIP:
		SV_Physics_Noclip (ent);
		break;
	case MOVETYPE_STEP:
		SV_Physics_Step (ent);
		break;
	case MOVETYPE_TOSS:
	case MOVETYPE_BOUNCE:
	case MOVETYPE_FLY:
	case MOVETYPE_FLYMISSILE:
		SV_Physics_Toss (ent);
		break;
	default:
		SV_Error ("SV_Physics: bad movetype %i", (int)ent->v.movetype);			
	}
}

/*
================
SV_RunNewmis

================
*/
void SV_RunNewmis (void)
{
	edict_t	*ent;

	if (!pr_global_struct->newmis)
		return;
	ent = PROG_TO_EDICT(pr_global_struct->newmis);
	host_frametime = 0.05;
	pr_global_struct->newmis = 0;
	
	SV_RunEntity (ent);		
}

/*
================
SV_Physics

================
*/
void SV_Physics (void)
{
	int		i;
	edict_t	*ent;
	static double	old_time;

// don't bother running a frame if sys_ticrate seconds haven't passed
	host_frametime = realtime - old_time;
	if (host_frametime < sv_mintic.value)
		return;
	if (host_frametime > sv_maxtic.value)
		host_frametime = sv_maxtic.value;
	old_time = realtime;

	pr_global_struct->frametime = host_frametime;

	SV_ProgStartFrame ();

//
// treat each object in turn
// even the world gets a chance to think
//
	ent = sv.edicts;
	for (i=0 ; i<sv.num_edicts ; i++, ent = NEXT_EDICT(ent))
	{
		if (ent->free)
			continue;

		if (pr_global_struct->force_retouch)
			SV_LinkEdict (ent, true);	// force retouch even for stationary

		if (i > 0 && i <= MAX_CLIENTS)
			continue;		// clients are run directly from packets

		SV_RunEntity (ent);
		SV_RunNewmis ();
	}
	
	if (pr_global_struct->force_retouch)
		pr_global_struct->force_retouch--;	
}

void SV_SetMoveVars(void)
{
	movevars.gravity			= sv_gravity.value; 
	movevars.stopspeed		    = sv_stopspeed.value;		 
	movevars.maxspeed			= sv_maxspeed.value;			 
	movevars.spectatormaxspeed  = sv_spectatormaxspeed.value; 
	movevars.accelerate		    = sv_accelerate.value;		 
	movevars.airaccelerate	    = sv_airaccelerate.value;	 
	movevars.wateraccelerate	= sv_wateraccelerate.value;	   
	movevars.friction			= sv_friction.value;			 
	movevars.waterfriction	    = sv_waterfriction.value;	 
	movevars.entgravity			= 1.0;
}