ref: fd9c0f1e1f1b74c46c5872217e3289a9edf69d48
dir: /training/rnn_dump.py/
#!/usr/bin/python from __future__ import print_function from keras.models import Sequential from keras.models import Model from keras.layers import Input from keras.layers import Dense from keras.layers import LSTM from keras.layers import GRU from keras.models import load_model from keras import backend as K import sys import numpy as np def printVector(f, vector, name): v = np.reshape(vector, (-1)); #print('static const float ', name, '[', len(v), '] = \n', file=f) f.write('static const opus_int8 {}[{}] = {{\n '.format(name, len(v))) for i in range(0, len(v)): f.write('{}'.format(max(-128,min(127,int(round(128*v[i])))))) if (i!=len(v)-1): f.write(',') else: break; if (i%8==7): f.write("\n ") else: f.write(" ") #print(v, file=f) f.write('\n};\n\n') return; def binary_crossentrop2(y_true, y_pred): return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1) #model = load_model(sys.argv[1], custom_objects={'binary_crossentrop2': binary_crossentrop2}) main_input = Input(shape=(None, 25), name='main_input') x = Dense(32, activation='tanh')(main_input) x = GRU(24, activation='tanh', recurrent_activation='sigmoid', return_sequences=True)(x) x = Dense(2, activation='sigmoid')(x) model = Model(inputs=main_input, outputs=x) model.load_weights(sys.argv[1]) weights = model.get_weights() f = open(sys.argv[2], 'w') f.write('/*This file is automatically generated from a Keras model*/\n\n') f.write('#ifdef HAVE_CONFIG_H\n#include "config.h"\n#endif\n\n#include "mlp.h"\n\n') printVector(f, weights[0], 'layer0_weights') printVector(f, weights[1], 'layer0_bias') printVector(f, weights[2], 'layer1_weights') printVector(f, weights[3], 'layer1_recur_weights') printVector(f, weights[4], 'layer1_bias') printVector(f, weights[5], 'layer2_weights') printVector(f, weights[6], 'layer2_bias') f.write('const DenseLayer layer0 = {\n layer0_bias,\n layer0_weights,\n 25, 32, 0\n};\n\n') f.write('const GRULayer layer1 = {\n layer1_bias,\n layer1_weights,\n layer1_recur_weights,\n 32, 24\n};\n\n') f.write('const DenseLayer layer2 = {\n layer2_bias,\n layer2_weights,\n 24, 2, 1\n};\n\n') f.close()