ref: f705e9b5bd0b4c60b9934962aef7af3c0865272f
dir: /silk/mips/NSQ_del_dec_mipsr1.h/
/*********************************************************************** Copyright (c) 2006-2011, Skype Limited. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of Internet Society, IETF or IETF Trust, nor the names of specific contributors, may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ***********************************************************************/ #ifndef __NSQ_DEL_DEC_MIPSR1_H__ #define __NSQ_DEL_DEC_MIPSR1_H__ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "main.h" #include "stack_alloc.h" #define OVERRIDE_silk_noise_shape_quantizer_del_dec static inline void silk_noise_shape_quantizer_del_dec( silk_nsq_state *NSQ, /* I/O NSQ state */ NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */ opus_int signalType, /* I Signal type */ const opus_int32 x_Q10[], /* I */ opus_int8 pulses[], /* O */ opus_int16 xq[], /* O */ opus_int32 sLTP_Q15[], /* I/O LTP filter state */ opus_int32 delayedGain_Q10[], /* I/O Gain delay buffer */ const opus_int16 a_Q12[], /* I Short term prediction coefs */ const opus_int16 b_Q14[], /* I Long term prediction coefs */ const opus_int16 AR_shp_Q13[], /* I Noise shaping coefs */ opus_int lag, /* I Pitch lag */ opus_int32 HarmShapeFIRPacked_Q14, /* I */ opus_int Tilt_Q14, /* I Spectral tilt */ opus_int32 LF_shp_Q14, /* I */ opus_int32 Gain_Q16, /* I */ opus_int Lambda_Q10, /* I */ opus_int offset_Q10, /* I */ opus_int length, /* I Input length */ opus_int subfr, /* I Subframe number */ opus_int shapingLPCOrder, /* I Shaping LPC filter order */ opus_int predictLPCOrder, /* I Prediction filter order */ opus_int warping_Q16, /* I */ opus_int nStatesDelayedDecision, /* I Number of states in decision tree */ opus_int *smpl_buf_idx, /* I Index to newest samples in buffers */ opus_int decisionDelay, /* I */ int arch /* I */ ) { opus_int i, j, k, Winner_ind, RDmin_ind, RDmax_ind, last_smple_idx; opus_int32 Winner_rand_state; opus_int32 LTP_pred_Q14, LPC_pred_Q14, n_AR_Q14, n_LTP_Q14; opus_int32 n_LF_Q14, r_Q10, rr_Q10, rd1_Q10, rd2_Q10, RDmin_Q10, RDmax_Q10; opus_int32 q1_Q0, q1_Q10, q2_Q10, exc_Q14, LPC_exc_Q14, xq_Q14, Gain_Q10; opus_int32 tmp1, tmp2, sLF_AR_shp_Q14; opus_int32 *pred_lag_ptr, *shp_lag_ptr, *psLPC_Q14; NSQ_sample_struct psSampleState[ MAX_DEL_DEC_STATES ][ 2 ]; NSQ_del_dec_struct *psDD; NSQ_sample_struct *psSS; opus_int16 b_Q14_0, b_Q14_1, b_Q14_2, b_Q14_3, b_Q14_4; opus_int16 a_Q12_0, a_Q12_1, a_Q12_2, a_Q12_3, a_Q12_4, a_Q12_5, a_Q12_6; opus_int16 a_Q12_7, a_Q12_8, a_Q12_9, a_Q12_10, a_Q12_11, a_Q12_12, a_Q12_13; opus_int16 a_Q12_14, a_Q12_15; opus_int32 cur, prev, next; /*Unused.*/ (void)arch; //Intialize b_Q14 variables b_Q14_0 = b_Q14[ 0 ]; b_Q14_1 = b_Q14[ 1 ]; b_Q14_2 = b_Q14[ 2 ]; b_Q14_3 = b_Q14[ 3 ]; b_Q14_4 = b_Q14[ 4 ]; //Intialize a_Q12 variables a_Q12_0 = a_Q12[0]; a_Q12_1 = a_Q12[1]; a_Q12_2 = a_Q12[2]; a_Q12_3 = a_Q12[3]; a_Q12_4 = a_Q12[4]; a_Q12_5 = a_Q12[5]; a_Q12_6 = a_Q12[6]; a_Q12_7 = a_Q12[7]; a_Q12_8 = a_Q12[8]; a_Q12_9 = a_Q12[9]; a_Q12_10 = a_Q12[10]; a_Q12_11 = a_Q12[11]; a_Q12_12 = a_Q12[12]; a_Q12_13 = a_Q12[13]; a_Q12_14 = a_Q12[14]; a_Q12_15 = a_Q12[15]; long long temp64; silk_assert( nStatesDelayedDecision > 0 ); shp_lag_ptr = &NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2 ]; pred_lag_ptr = &sLTP_Q15[ NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2 ]; Gain_Q10 = silk_RSHIFT( Gain_Q16, 6 ); for( i = 0; i < length; i++ ) { /* Perform common calculations used in all states */ /* Long-term prediction */ if( signalType == TYPE_VOICED ) { /* Unrolled loop */ /* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */ temp64 = __builtin_mips_mult(pred_lag_ptr[ 0 ], b_Q14_0 ); temp64 = __builtin_mips_madd( temp64, pred_lag_ptr[ -1 ], b_Q14_1 ); temp64 = __builtin_mips_madd( temp64, pred_lag_ptr[ -2 ], b_Q14_2 ); temp64 = __builtin_mips_madd( temp64, pred_lag_ptr[ -3 ], b_Q14_3 ); temp64 = __builtin_mips_madd( temp64, pred_lag_ptr[ -4 ], b_Q14_4 ); temp64 += 32768; LTP_pred_Q14 = __builtin_mips_extr_w(temp64, 16); LTP_pred_Q14 = silk_LSHIFT( LTP_pred_Q14, 1 ); /* Q13 -> Q14 */ pred_lag_ptr++; } else { LTP_pred_Q14 = 0; } /* Long-term shaping */ if( lag > 0 ) { /* Symmetric, packed FIR coefficients */ n_LTP_Q14 = silk_SMULWB( silk_ADD32( shp_lag_ptr[ 0 ], shp_lag_ptr[ -2 ] ), HarmShapeFIRPacked_Q14 ); n_LTP_Q14 = silk_SMLAWT( n_LTP_Q14, shp_lag_ptr[ -1 ], HarmShapeFIRPacked_Q14 ); n_LTP_Q14 = silk_SUB_LSHIFT32( LTP_pred_Q14, n_LTP_Q14, 2 ); /* Q12 -> Q14 */ shp_lag_ptr++; } else { n_LTP_Q14 = 0; } for( k = 0; k < nStatesDelayedDecision; k++ ) { /* Delayed decision state */ psDD = &psDelDec[ k ]; /* Sample state */ psSS = psSampleState[ k ]; /* Generate dither */ psDD->Seed = silk_RAND( psDD->Seed ); /* Pointer used in short term prediction and shaping */ psLPC_Q14 = &psDD->sLPC_Q14[ NSQ_LPC_BUF_LENGTH - 1 + i ]; /* Short-term prediction */ silk_assert( predictLPCOrder == 10 || predictLPCOrder == 16 ); temp64 = __builtin_mips_mult(psLPC_Q14[ 0 ], a_Q12_0 ); temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -1 ], a_Q12_1 ); temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -2 ], a_Q12_2 ); temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -3 ], a_Q12_3 ); temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -4 ], a_Q12_4 ); temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -5 ], a_Q12_5 ); temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -6 ], a_Q12_6 ); temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -7 ], a_Q12_7 ); temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -8 ], a_Q12_8 ); temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -9 ], a_Q12_9 ); if( predictLPCOrder == 16 ) { temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -10 ], a_Q12_10 ); temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -11 ], a_Q12_11 ); temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -12 ], a_Q12_12 ); temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -13 ], a_Q12_13 ); temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -14 ], a_Q12_14 ); temp64 = __builtin_mips_madd( temp64, psLPC_Q14[ -15 ], a_Q12_15 ); } temp64 += 32768; LPC_pred_Q14 = __builtin_mips_extr_w(temp64, 16); LPC_pred_Q14 = silk_LSHIFT( LPC_pred_Q14, 4 ); /* Q10 -> Q14 */ /* Noise shape feedback */ silk_assert( ( shapingLPCOrder & 1 ) == 0 ); /* check that order is even */ /* Output of lowpass section */ tmp2 = silk_SMLAWB( psLPC_Q14[ 0 ], psDD->sAR2_Q14[ 0 ], warping_Q16 ); /* Output of allpass section */ tmp1 = silk_SMLAWB( psDD->sAR2_Q14[ 0 ], psDD->sAR2_Q14[ 1 ] - tmp2, warping_Q16 ); psDD->sAR2_Q14[ 0 ] = tmp2; temp64 = __builtin_mips_mult(tmp2, AR_shp_Q13[ 0 ] ); prev = psDD->sAR2_Q14[ 1 ]; /* Loop over allpass sections */ for( j = 2; j < shapingLPCOrder; j += 2 ) { cur = psDD->sAR2_Q14[ j ]; next = psDD->sAR2_Q14[ j+1 ]; /* Output of allpass section */ tmp2 = silk_SMLAWB( prev, cur - tmp1, warping_Q16 ); psDD->sAR2_Q14[ j - 1 ] = tmp1; temp64 = __builtin_mips_madd( temp64, tmp1, AR_shp_Q13[ j - 1 ] ); temp64 = __builtin_mips_madd( temp64, tmp2, AR_shp_Q13[ j ] ); /* Output of allpass section */ tmp1 = silk_SMLAWB( cur, next - tmp2, warping_Q16 ); psDD->sAR2_Q14[ j + 0 ] = tmp2; prev = next; } psDD->sAR2_Q14[ shapingLPCOrder - 1 ] = tmp1; temp64 = __builtin_mips_madd( temp64, tmp1, AR_shp_Q13[ shapingLPCOrder - 1 ] ); temp64 += 32768; n_AR_Q14 = __builtin_mips_extr_w(temp64, 16); n_AR_Q14 = silk_LSHIFT( n_AR_Q14, 1 ); /* Q11 -> Q12 */ n_AR_Q14 = silk_SMLAWB( n_AR_Q14, psDD->LF_AR_Q14, Tilt_Q14 ); /* Q12 */ n_AR_Q14 = silk_LSHIFT( n_AR_Q14, 2 ); /* Q12 -> Q14 */ n_LF_Q14 = silk_SMULWB( psDD->Shape_Q14[ *smpl_buf_idx ], LF_shp_Q14 ); /* Q12 */ n_LF_Q14 = silk_SMLAWT( n_LF_Q14, psDD->LF_AR_Q14, LF_shp_Q14 ); /* Q12 */ n_LF_Q14 = silk_LSHIFT( n_LF_Q14, 2 ); /* Q12 -> Q14 */ /* Input minus prediction plus noise feedback */ /* r = x[ i ] - LTP_pred - LPC_pred + n_AR + n_Tilt + n_LF + n_LTP */ tmp1 = silk_ADD32( n_AR_Q14, n_LF_Q14 ); /* Q14 */ tmp2 = silk_ADD32( n_LTP_Q14, LPC_pred_Q14 ); /* Q13 */ tmp1 = silk_SUB32( tmp2, tmp1 ); /* Q13 */ tmp1 = silk_RSHIFT_ROUND( tmp1, 4 ); /* Q10 */ r_Q10 = silk_SUB32( x_Q10[ i ], tmp1 ); /* residual error Q10 */ /* Flip sign depending on dither */ if ( psDD->Seed < 0 ) { r_Q10 = -r_Q10; } r_Q10 = silk_LIMIT_32( r_Q10, -(31 << 10), 30 << 10 ); /* Find two quantization level candidates and measure their rate-distortion */ q1_Q10 = silk_SUB32( r_Q10, offset_Q10 ); q1_Q0 = silk_RSHIFT( q1_Q10, 10 ); if( q1_Q0 > 0 ) { q1_Q10 = silk_SUB32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 ); q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 ); q2_Q10 = silk_ADD32( q1_Q10, 1024 ); rd1_Q10 = silk_SMULBB( q1_Q10, Lambda_Q10 ); rd2_Q10 = silk_SMULBB( q2_Q10, Lambda_Q10 ); } else if( q1_Q0 == 0 ) { q1_Q10 = offset_Q10; q2_Q10 = silk_ADD32( q1_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 ); rd1_Q10 = silk_SMULBB( q1_Q10, Lambda_Q10 ); rd2_Q10 = silk_SMULBB( q2_Q10, Lambda_Q10 ); } else if( q1_Q0 == -1 ) { q2_Q10 = offset_Q10; q1_Q10 = silk_SUB32( q2_Q10, 1024 - QUANT_LEVEL_ADJUST_Q10 ); rd1_Q10 = silk_SMULBB( -q1_Q10, Lambda_Q10 ); rd2_Q10 = silk_SMULBB( q2_Q10, Lambda_Q10 ); } else { /* q1_Q0 < -1 */ q1_Q10 = silk_ADD32( silk_LSHIFT( q1_Q0, 10 ), QUANT_LEVEL_ADJUST_Q10 ); q1_Q10 = silk_ADD32( q1_Q10, offset_Q10 ); q2_Q10 = silk_ADD32( q1_Q10, 1024 ); rd1_Q10 = silk_SMULBB( -q1_Q10, Lambda_Q10 ); rd2_Q10 = silk_SMULBB( -q2_Q10, Lambda_Q10 ); } rr_Q10 = silk_SUB32( r_Q10, q1_Q10 ); rd1_Q10 = silk_RSHIFT( silk_SMLABB( rd1_Q10, rr_Q10, rr_Q10 ), 10 ); rr_Q10 = silk_SUB32( r_Q10, q2_Q10 ); rd2_Q10 = silk_RSHIFT( silk_SMLABB( rd2_Q10, rr_Q10, rr_Q10 ), 10 ); if( rd1_Q10 < rd2_Q10 ) { psSS[ 0 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd1_Q10 ); psSS[ 1 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd2_Q10 ); psSS[ 0 ].Q_Q10 = q1_Q10; psSS[ 1 ].Q_Q10 = q2_Q10; } else { psSS[ 0 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd2_Q10 ); psSS[ 1 ].RD_Q10 = silk_ADD32( psDD->RD_Q10, rd1_Q10 ); psSS[ 0 ].Q_Q10 = q2_Q10; psSS[ 1 ].Q_Q10 = q1_Q10; } /* Update states for best quantization */ /* Quantized excitation */ exc_Q14 = silk_LSHIFT32( psSS[ 0 ].Q_Q10, 4 ); if ( psDD->Seed < 0 ) { exc_Q14 = -exc_Q14; } /* Add predictions */ LPC_exc_Q14 = silk_ADD32( exc_Q14, LTP_pred_Q14 ); xq_Q14 = silk_ADD32( LPC_exc_Q14, LPC_pred_Q14 ); /* Update states */ sLF_AR_shp_Q14 = silk_SUB32( xq_Q14, n_AR_Q14 ); psSS[ 0 ].sLTP_shp_Q14 = silk_SUB32( sLF_AR_shp_Q14, n_LF_Q14 ); psSS[ 0 ].LF_AR_Q14 = sLF_AR_shp_Q14; psSS[ 0 ].LPC_exc_Q14 = LPC_exc_Q14; psSS[ 0 ].xq_Q14 = xq_Q14; /* Update states for second best quantization */ /* Quantized excitation */ exc_Q14 = silk_LSHIFT32( psSS[ 1 ].Q_Q10, 4 ); if ( psDD->Seed < 0 ) { exc_Q14 = -exc_Q14; } /* Add predictions */ LPC_exc_Q14 = silk_ADD32( exc_Q14, LTP_pred_Q14 ); xq_Q14 = silk_ADD32( LPC_exc_Q14, LPC_pred_Q14 ); /* Update states */ sLF_AR_shp_Q14 = silk_SUB32( xq_Q14, n_AR_Q14 ); psSS[ 1 ].sLTP_shp_Q14 = silk_SUB32( sLF_AR_shp_Q14, n_LF_Q14 ); psSS[ 1 ].LF_AR_Q14 = sLF_AR_shp_Q14; psSS[ 1 ].LPC_exc_Q14 = LPC_exc_Q14; psSS[ 1 ].xq_Q14 = xq_Q14; } *smpl_buf_idx = ( *smpl_buf_idx - 1 ) % DECISION_DELAY; if( *smpl_buf_idx < 0 ) *smpl_buf_idx += DECISION_DELAY; last_smple_idx = ( *smpl_buf_idx + decisionDelay ) % DECISION_DELAY; /* Find winner */ RDmin_Q10 = psSampleState[ 0 ][ 0 ].RD_Q10; Winner_ind = 0; for( k = 1; k < nStatesDelayedDecision; k++ ) { if( psSampleState[ k ][ 0 ].RD_Q10 < RDmin_Q10 ) { RDmin_Q10 = psSampleState[ k ][ 0 ].RD_Q10; Winner_ind = k; } } /* Increase RD values of expired states */ Winner_rand_state = psDelDec[ Winner_ind ].RandState[ last_smple_idx ]; for( k = 0; k < nStatesDelayedDecision; k++ ) { if( psDelDec[ k ].RandState[ last_smple_idx ] != Winner_rand_state ) { psSampleState[ k ][ 0 ].RD_Q10 = silk_ADD32( psSampleState[ k ][ 0 ].RD_Q10, silk_int32_MAX >> 4 ); psSampleState[ k ][ 1 ].RD_Q10 = silk_ADD32( psSampleState[ k ][ 1 ].RD_Q10, silk_int32_MAX >> 4 ); silk_assert( psSampleState[ k ][ 0 ].RD_Q10 >= 0 ); } } /* Find worst in first set and best in second set */ RDmax_Q10 = psSampleState[ 0 ][ 0 ].RD_Q10; RDmin_Q10 = psSampleState[ 0 ][ 1 ].RD_Q10; RDmax_ind = 0; RDmin_ind = 0; for( k = 1; k < nStatesDelayedDecision; k++ ) { /* find worst in first set */ if( psSampleState[ k ][ 0 ].RD_Q10 > RDmax_Q10 ) { RDmax_Q10 = psSampleState[ k ][ 0 ].RD_Q10; RDmax_ind = k; } /* find best in second set */ if( psSampleState[ k ][ 1 ].RD_Q10 < RDmin_Q10 ) { RDmin_Q10 = psSampleState[ k ][ 1 ].RD_Q10; RDmin_ind = k; } } /* Replace a state if best from second set outperforms worst in first set */ if( RDmin_Q10 < RDmax_Q10 ) { silk_memcpy( ( (opus_int32 *)&psDelDec[ RDmax_ind ] ) + i, ( (opus_int32 *)&psDelDec[ RDmin_ind ] ) + i, sizeof( NSQ_del_dec_struct ) - i * sizeof( opus_int32) ); silk_memcpy( &psSampleState[ RDmax_ind ][ 0 ], &psSampleState[ RDmin_ind ][ 1 ], sizeof( NSQ_sample_struct ) ); } /* Write samples from winner to output and long-term filter states */ psDD = &psDelDec[ Winner_ind ]; if( subfr > 0 || i >= decisionDelay ) { pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDD->Q_Q10[ last_smple_idx ], 10 ); xq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( silk_SMULWW( psDD->Xq_Q14[ last_smple_idx ], delayedGain_Q10[ last_smple_idx ] ), 8 ) ); NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay ] = psDD->Shape_Q14[ last_smple_idx ]; sLTP_Q15[ NSQ->sLTP_buf_idx - decisionDelay ] = psDD->Pred_Q15[ last_smple_idx ]; } NSQ->sLTP_shp_buf_idx++; NSQ->sLTP_buf_idx++; /* Update states */ for( k = 0; k < nStatesDelayedDecision; k++ ) { psDD = &psDelDec[ k ]; psSS = &psSampleState[ k ][ 0 ]; psDD->LF_AR_Q14 = psSS->LF_AR_Q14; psDD->sLPC_Q14[ NSQ_LPC_BUF_LENGTH + i ] = psSS->xq_Q14; psDD->Xq_Q14[ *smpl_buf_idx ] = psSS->xq_Q14; psDD->Q_Q10[ *smpl_buf_idx ] = psSS->Q_Q10; psDD->Pred_Q15[ *smpl_buf_idx ] = silk_LSHIFT32( psSS->LPC_exc_Q14, 1 ); psDD->Shape_Q14[ *smpl_buf_idx ] = psSS->sLTP_shp_Q14; psDD->Seed = silk_ADD32_ovflw( psDD->Seed, silk_RSHIFT_ROUND( psSS->Q_Q10, 10 ) ); psDD->RandState[ *smpl_buf_idx ] = psDD->Seed; psDD->RD_Q10 = psSS->RD_Q10; } delayedGain_Q10[ *smpl_buf_idx ] = Gain_Q10; } /* Update LPC states */ for( k = 0; k < nStatesDelayedDecision; k++ ) { psDD = &psDelDec[ k ]; silk_memcpy( psDD->sLPC_Q14, &psDD->sLPC_Q14[ length ], NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) ); } } #endif /* __NSQ_DEL_DEC_MIPSR1_H__ */