ref: daf1d12c86850e96d44382494417e09ccd1eae3b
dir: /src/opus_compare.c/
/* Copyright (c) 2011-2012 Xiph.Org Foundation, Mozilla Corporation Written by Jean-Marc Valin and Timothy B. Terriberry */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <stdio.h> #include <stdlib.h> #include <math.h> #include <string.h> #define OPUS_PI (3.14159265F) #define OPUS_COSF(_x) ((float)cos(_x)) #define OPUS_SINF(_x) ((float)sin(_x)) static void *check_alloc(void *_ptr){ if(_ptr==NULL){ fprintf(stderr,"Out of memory.\n"); exit(EXIT_FAILURE); } return _ptr; } static void *opus_malloc(size_t _size){ return check_alloc(malloc(_size)); } static void *opus_realloc(void *_ptr,size_t _size){ return check_alloc(realloc(_ptr,_size)); } static size_t read_pcm16(float **_samples,FILE *_fin,int _nchannels){ unsigned char buf[1024]; float *samples; size_t nsamples; size_t csamples; size_t xi; size_t nread; samples=NULL; nsamples=csamples=0; for(;;){ nread=fread(buf,2*_nchannels,1024/(2*_nchannels),_fin); if(nread<=0)break; if(nsamples+nread>csamples){ do csamples=csamples<<1|1; while(nsamples+nread>csamples); samples=(float *)opus_realloc(samples, _nchannels*csamples*sizeof(*samples)); } for(xi=0;xi<nread;xi++){ int ci; for(ci=0;ci<_nchannels;ci++){ int s; s=buf[2*(xi*_nchannels+ci)+1]<<8|buf[2*(xi*_nchannels+ci)]; s=((s&0xFFFF)^0x8000)-0x8000; samples[(nsamples+xi)*_nchannels+ci]=s; } } nsamples+=nread; } *_samples=(float *)opus_realloc(samples, _nchannels*nsamples*sizeof(*samples)); return nsamples; } static void band_energy(float *_out,float *_ps,const int *_bands,int _nbands, const float *_in,int _nchannels,size_t _nframes,int _window_sz, int _step,int _downsample){ float *window; float *x; float *c; float *s; size_t xi; int xj; int ps_sz; window=(float *)opus_malloc((3+_nchannels)*_window_sz*sizeof(*window)); c=window+_window_sz; s=c+_window_sz; x=s+_window_sz; ps_sz=_window_sz/2; for(xj=0;xj<_window_sz;xj++){ window[xj]=0.5F-0.5F*OPUS_COSF((2*OPUS_PI/(_window_sz-1))*xj); } for(xj=0;xj<_window_sz;xj++){ c[xj]=OPUS_COSF((2*OPUS_PI/_window_sz)*xj); } for(xj=0;xj<_window_sz;xj++){ s[xj]=OPUS_SINF((2*OPUS_PI/_window_sz)*xj); } for(xi=0;xi<_nframes;xi++){ int ci; int xk; int bi; for(ci=0;ci<_nchannels;ci++){ for(xk=0;xk<_window_sz;xk++){ x[ci*_window_sz+xk]=window[xk]*_in[(xi*_step+xk)*_nchannels+ci]; } } for(bi=xj=0;bi<_nbands;bi++){ float p[2]={0}; for(;xj<_bands[bi+1];xj++){ for(ci=0;ci<_nchannels;ci++){ float re; float im; int ti; ti=0; re=im=0; for(xk=0;xk<_window_sz;xk++){ re+=c[ti]*x[ci*_window_sz+xk]; im-=s[ti]*x[ci*_window_sz+xk]; ti+=xj; if(ti>=_window_sz)ti-=_window_sz; } re*=_downsample; im*=_downsample; _ps[(xi*ps_sz+xj)*_nchannels+ci]=re*re+im*im+100000; p[ci]+=_ps[(xi*ps_sz+xj)*_nchannels+ci]; } } if(_out){ _out[(xi*_nbands+bi)*_nchannels]=p[0]/(_bands[bi+1]-_bands[bi]); if(_nchannels==2){ _out[(xi*_nbands+bi)*_nchannels+1]=p[1]/(_bands[bi+1]-_bands[bi]); } } } } free(window); } #define NBANDS (21) #define NFREQS (240) /*Bands on which we compute the pseudo-NMR (Bark-derived CELT bands).*/ static const int BANDS[NBANDS+1]={ 0,2,4,6,8,10,12,14,16,20,24,28,32,40,48,56,68,80,96,120,156,200 }; #define TEST_WIN_SIZE (480) #define TEST_WIN_STEP (120) int main(int _argc,const char **_argv){ FILE *fin1; FILE *fin2; float *x; float *y; float *xb; float *X; float *Y; double err; float Q; size_t xlength; size_t ylength; size_t nframes; size_t xi; int ci; int xj; int bi; int nchannels; unsigned rate; int downsample; int ybands; int yfreqs; int max_compare; if(_argc<3||_argc>6){ fprintf(stderr,"Usage: %s [-s] [-r rate2] <file1.sw> <file2.sw>\n", _argv[0]); return EXIT_FAILURE; } nchannels=1; if(strcmp(_argv[1],"-s")==0){ nchannels=2; _argv++; } rate=48000; ybands=NBANDS; yfreqs=NFREQS; downsample=1; if(strcmp(_argv[1],"-r")==0){ rate=atoi(_argv[2]); if(rate!=8000&&rate!=12000&&rate!=16000&&rate!=24000&&rate!=48000){ fprintf(stderr, "Sampling rate must be 8000, 12000, 16000, 24000, or 48000\n"); return EXIT_FAILURE; } downsample=48000/rate; switch(rate){ case 8000:ybands=13;break; case 12000:ybands=15;break; case 16000:ybands=17;break; case 24000:ybands=19;break; } yfreqs=NFREQS/downsample; _argv+=2; } fin1=fopen(_argv[1],"rb"); if(fin1==NULL){ fprintf(stderr,"Error opening '%s'.\n",_argv[1]); return EXIT_FAILURE; } fin2=fopen(_argv[2],"rb"); if(fin2==NULL){ fprintf(stderr,"Error opening '%s'.\n",_argv[2]); fclose(fin1); return EXIT_FAILURE; } /*Read in the data and allocate scratch space.*/ xlength=read_pcm16(&x,fin1,2); if(nchannels==1){ for(xi=0;xi<xlength;xi++)x[xi]=.5*(x[2*xi]+x[2*xi+1]); } fclose(fin1); ylength=read_pcm16(&y,fin2,nchannels); fclose(fin2); if(xlength!=ylength*downsample){ fprintf(stderr,"Sample counts do not match (%lu!=%lu).\n", (unsigned long)xlength,(unsigned long)ylength*downsample); return EXIT_FAILURE; } if(xlength<TEST_WIN_SIZE){ fprintf(stderr,"Insufficient sample data (%lu<%i).\n", (unsigned long)xlength,TEST_WIN_SIZE); return EXIT_FAILURE; } nframes=(xlength-TEST_WIN_SIZE+TEST_WIN_STEP)/TEST_WIN_STEP; xb=(float *)opus_malloc(nframes*NBANDS*nchannels*sizeof(*xb)); X=(float *)opus_malloc(nframes*NFREQS*nchannels*sizeof(*X)); Y=(float *)opus_malloc(nframes*yfreqs*nchannels*sizeof(*Y)); /*Compute the per-band spectral energy of the original signal and the error.*/ band_energy(xb,X,BANDS,NBANDS,x,nchannels,nframes, TEST_WIN_SIZE,TEST_WIN_STEP,1); free(x); band_energy(NULL,Y,BANDS,ybands,y,nchannels,nframes, TEST_WIN_SIZE/downsample,TEST_WIN_STEP/downsample,downsample); free(y); for(xi=0;xi<nframes;xi++){ /*Frequency masking (low to high): 10 dB/Bark slope.*/ for(bi=1;bi<NBANDS;bi++){ for(ci=0;ci<nchannels;ci++){ xb[(xi*NBANDS+bi)*nchannels+ci]+= 0.1F*xb[(xi*NBANDS+bi-1)*nchannels+ci]; } } /*Frequency masking (high to low): 15 dB/Bark slope.*/ for(bi=NBANDS-1;bi-->0;){ for(ci=0;ci<nchannels;ci++){ xb[(xi*NBANDS+bi)*nchannels+ci]+= 0.03F*xb[(xi*NBANDS+bi+1)*nchannels+ci]; } } if(xi>0){ /*Temporal masking: -3 dB/2.5ms slope.*/ for(bi=0;bi<NBANDS;bi++){ for(ci=0;ci<nchannels;ci++){ xb[(xi*NBANDS+bi)*nchannels+ci]+= 0.5F*xb[((xi-1)*NBANDS+bi)*nchannels+ci]; } } } /* Allowing some cross-talk */ if(nchannels==2){ for(bi=0;bi<NBANDS;bi++){ float l,r; l=xb[(xi*NBANDS+bi)*nchannels+0]; r=xb[(xi*NBANDS+bi)*nchannels+1]; xb[(xi*NBANDS+bi)*nchannels+0]+=0.01F*r; xb[(xi*NBANDS+bi)*nchannels+1]+=0.01F*l; } } /* Apply masking */ for(bi=0;bi<ybands;bi++){ for(xj=BANDS[bi];xj<BANDS[bi+1];xj++){ for(ci=0;ci<nchannels;ci++){ X[(xi*NFREQS+xj)*nchannels+ci]+= 0.1F*xb[(xi*NBANDS+bi)*nchannels+ci]; Y[(xi*yfreqs+xj)*nchannels+ci]+= 0.1F*xb[(xi*NBANDS+bi)*nchannels+ci]; } } } } /* Average of consecutive frames to make comparison slightly less sensitive */ for(bi=0;bi<ybands;bi++){ for(xj=BANDS[bi];xj<BANDS[bi+1];xj++){ for(ci=0;ci<nchannels;ci++){ float xtmp; float ytmp; xtmp = X[xj*nchannels+ci]; ytmp = Y[xj*nchannels+ci]; for(xi=1;xi<nframes;xi++){ float xtmp2; float ytmp2; xtmp2 = X[(xi*NFREQS+xj)*nchannels+ci]; ytmp2 = Y[(xi*yfreqs+xj)*nchannels+ci]; X[(xi*NFREQS+xj)*nchannels+ci] += xtmp; Y[(xi*yfreqs+xj)*nchannels+ci] += ytmp; xtmp = xtmp2; ytmp = ytmp2; } } } } /*If working at a lower sampling rate, don't take into account the last 300 Hz to allow for different transition bands. For 12 kHz, we don't skip anything, because the last band already skips 400 Hz.*/ if(rate==48000)max_compare=BANDS[NBANDS]; else if(rate==12000)max_compare=BANDS[ybands]; else max_compare=BANDS[ybands]-3; err=0; for(xi=0;xi<nframes;xi++){ double Ef; Ef=0; for(bi=0;bi<ybands;bi++){ double Eb; Eb=0; for(xj=BANDS[bi];xj<BANDS[bi+1]&&xj<max_compare;xj++){ for(ci=0;ci<nchannels;ci++){ float re; float im; re=Y[(xi*yfreqs+xj)*nchannels+ci]/X[(xi*NFREQS+xj)*nchannels+ci]; im=re-log(re)-1; /*Make comparison less sensitive around the SILK/CELT cross-over to allow for mode freedom in the filters.*/ if(xj>=79&&xj<=81)im*=0.1F; if(xj==80)im*=0.1F; Eb+=im; } } Eb /= (BANDS[bi+1]-BANDS[bi])*nchannels; Ef += Eb*Eb; } /*Using a fixed normalization value means we're willing to accept slightly lower quality for lower sampling rates.*/ Ef/=NBANDS; Ef*=Ef; err+=Ef*Ef; } err=pow(err/nframes,1.0/16); Q=100*(1-0.5*log(1+err)/log(1.13)); if(Q<0){ fprintf(stderr,"Test vector FAILS\n"); fprintf(stderr,"Internal weighted error is %f\n",err); return EXIT_FAILURE; } else{ fprintf(stderr,"Test vector PASSES\n"); fprintf(stderr, "Opus quality metric: %.1f %% (internal weighted error is %f)\n",Q,err); return EXIT_SUCCESS; } }