ref: 1fd53f9a928a7c76d1a89c01f0e8466efaa071bf
dir: /silk/fixed/x86/vector_ops_FIX_sse.c/
/* Copyright (c) 2014, Cisco Systems, INC Written by XiangMingZhu WeiZhou MinPeng YanWang Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include <xmmintrin.h> #include <emmintrin.h> #include <smmintrin.h> #include "main.h" #include "SigProc_FIX.h" #include "pitch.h" opus_int64 silk_inner_prod16_aligned_64_sse4_1( const opus_int16 *inVec1, /* I input vector 1 */ const opus_int16 *inVec2, /* I input vector 2 */ const opus_int len /* I vector lengths */ ) { opus_int i, dataSize8; opus_int64 sum; __m128i xmm_tempa; __m128i inVec1_76543210, acc1; __m128i inVec2_76543210, acc2; sum = 0; dataSize8 = len & ~7; acc1 = _mm_setzero_si128(); acc2 = _mm_setzero_si128(); for( i = 0; i < dataSize8; i += 8 ) { inVec1_76543210 = _mm_loadu_si128( (__m128i *)(&inVec1[i + 0] ) ); inVec2_76543210 = _mm_loadu_si128( (__m128i *)(&inVec2[i + 0] ) ); /* only when all 4 operands are -32768 (0x8000), this results in wrap around */ inVec1_76543210 = _mm_madd_epi16( inVec1_76543210, inVec2_76543210 ); xmm_tempa = _mm_cvtepi32_epi64( inVec1_76543210 ); /* equal shift right 8 bytes */ inVec1_76543210 = _mm_shuffle_epi32( inVec1_76543210, _MM_SHUFFLE( 0, 0, 3, 2 ) ); inVec1_76543210 = _mm_cvtepi32_epi64( inVec1_76543210 ); acc1 = _mm_add_epi64( acc1, xmm_tempa ); acc2 = _mm_add_epi64( acc2, inVec1_76543210 ); } acc1 = _mm_add_epi64( acc1, acc2 ); /* equal shift right 8 bytes */ acc2 = _mm_shuffle_epi32( acc1, _MM_SHUFFLE( 0, 0, 3, 2 ) ); acc1 = _mm_add_epi64( acc1, acc2 ); _mm_storel_epi64( (__m128i *)&sum, acc1 ); for( ; i < len; i++ ) { sum = silk_SMLABB( sum, inVec1[ i ], inVec2[ i ] ); } return sum; }