ref: e08060746f8d0f1f42f8eeefb4fa6a699a6d331e
dir: /lib/math/pown-impl.myr/
use std use "fpmath" use "log-impl" use "log-overkill" use "sum-impl" use "util" /* This is an implementation of pown: computing x^n where n is an integer. We sort of follow [PEB04], but without their high-radix log_2. */ pkg math = pkglocal const pown32 : (x : flt32, n : int32 -> flt32) pkglocal const pown64 : (x : flt64, n : int64 -> flt64) ;; type fltdesc(@f, @u, @i) = struct explode : (f : @f -> (bool, @i, @u)) assem : (n : bool, e : @i, s : @u -> @f) tobits : (f : @f -> @u) frombits : (u : @u -> @f) C : (@u, @u)[:] one_over_ln2_hi : @u one_over_ln2_lo : @u nan : @u inf : @u neginf : @u magcmp : (f : @f, g : @f -> std.order) two_by_two : (x : @f, y : @f -> (@f, @f)) log_overkill : (x : @f -> (@f, @f)) emin : @i emax : @i imax : @i imin : @i ;; const desc32 : fltdesc(flt32, uint32, int32) = [ .explode = std.flt32explode, .assem = std.flt32assem, .tobits = std.flt32bits, .frombits = std.flt32frombits, .C = accurate_logs32[0:130], /* See log-impl.myr */ .one_over_ln2_hi = 0x3fb8aa3b, /* 1/ln(2), top part */ .one_over_ln2_lo = 0x32a57060, /* 1/ln(2), bottom part */ .nan = 0x7fc00000, .inf = 0x7f800000, .neginf = 0xff800000, .magcmp = mag_cmp32, .two_by_two = two_by_two32, .log_overkill = logoverkill32, .emin = -126, .emax = 127, .imax = 2147483647, /* For detecting overflow in final exponent */ .imin = -2147483648, ] const desc64 : fltdesc(flt64, uint64, int64) = [ .explode = std.flt64explode, .assem = std.flt64assem, .tobits = std.flt64bits, .frombits = std.flt64frombits, .C = accurate_logs64[0:130], /* See log-impl.myr */ .one_over_ln2_hi = 0x3ff71547652b82fe, .one_over_ln2_lo = 0x3c7777d0ffda0d24, .nan = 0x7ff8000000000000, .inf = 0x7ff0000000000000, .neginf = 0xfff0000000000000, .magcmp = mag_cmp64, .two_by_two = two_by_two64, .log_overkill = logoverkill64, .emin = -1022, .emax = 1023, .imax = 9223372036854775807, .imin = -9223372036854775808, ] const pown32 = {x : flt32, n : int32 -> powngen(x, n, desc32) } const pown64 = {x : flt64, n : int64 -> powngen(x, n, desc64) } generic powngen = {x : @f, n : @i, d : fltdesc(@f, @u, @i) :: numeric,floating,std.equatable @f, numeric,integral @u, numeric,integral @i var xb xb = d.tobits(x) var xn : bool, xe : @i, xs : @u (xn, xe, xs) = d.explode(x) var nf : @f = (n : @f) /* Special cases. Note we do not follow IEEE exceptions. */ if n == 0 /* Anything^0 is 1. We're taking the view that x is a tiny range of reals, so a dense subset of them are 1, even if x is 0.0. */ -> 1.0 elif std.isnan(x) /* Propagate NaN (why doesn't this come first? Ask IEEE.) */ -> d.frombits(d.nan) elif (x == 0.0) if n < 0 && (n % 2 == 1) && xn /* (+/- 0)^n = +/- oo */ -> d.frombits(d.neginf) elif n < 0 -> d.frombits(d.inf) elif n % 2 == 1 /* (+/- 0)^n = +/- 0 (n odd) */ -> d.assem(xn, d.emin - 1, 0) else -> 0.0 ;; elif n == 1 /* Anything^1 is itself */ -> x ;; /* (-f)^n = (-1)^n * (f)^n. Figure this out now, then pretend f >= 0.0 */ var ult_sgn = 1.0 if xn && (n % 2 == 1 || n % 2 == -1) ult_sgn = -1.0 ;; /* Compute (with x = xs * 2^e) x^n = 2^(n*log2(xs)) * 2^(n*e) = 2^(I + F) * 2^(n*e) = 2^(F) * 2^(I+n*e) Since n and e, and I are all integers, we can get the last part from scale2. The hard part is computing I and F, and then computing 2^F. */ var ln_xs_hi, ln_xs_lo (ln_xs_hi, ln_xs_lo) = d.log_overkill(d.assem(false, 0, xs)) /* Now x^n = 2^(n * [ ln_xs / ln(2) ]) * 2^(n + e) */ var ls1 : @f[8] (ls1[0], ls1[1]) = d.two_by_two(ln_xs_hi, d.frombits(d.one_over_ln2_hi)) (ls1[2], ls1[3]) = d.two_by_two(ln_xs_hi, d.frombits(d.one_over_ln2_lo)) (ls1[4], ls1[5]) = d.two_by_two(ln_xs_lo, d.frombits(d.one_over_ln2_hi)) (ls1[6], ls1[7]) = d.two_by_two(ln_xs_lo, d.frombits(d.one_over_ln2_lo)) /* Now log2(xs) = Sum(ls1), so x^n = 2^(n * Sum(ls1)) * 2^(n * e) */ var E1, E2 (E1, E2) = double_compensated_sum(ls1[0:8]) var ls2 : @f[5] var ls2s : @f[5] var I = 0 (ls2[0], ls2[1]) = d.two_by_two(E1, nf) (ls2[2], ls2[3]) = d.two_by_two(E2, nf) ls2[4] = 0.0 /* Now x^n = 2^(Sum(ls2)) * 2^(n + e) */ for var j = 0; j < 5; ++j var i = rn(ls2[j]) I += i ls2[j] -= (i : @f) ;; var F1, F2 std.slcp(ls2s[0:5], ls2[0:5]) std.sort(ls2s[0:5], d.magcmp) (F1, F2) = double_compensated_sum(ls2s[0:5]) if (F1 < 0.0 || F1 > 1.0) var i = rn(F1) I += i ls2[4] -= (i : @f) std.slcp(ls2s[0:5], ls2[0:5]) std.sort(ls2s[0:5], d.magcmp) (F1, F2) = double_compensated_sum(ls2s[0:5]) ;; /* Now, x^n = 2^(F1 + F2) * 2^(I + n*e). */ var ls3 : @f[6] var log2_hi, log2_lo (log2_hi, log2_lo) = d.C[128] (ls3[0], ls3[1]) = d.two_by_two(F1, d.frombits(log2_hi)) (ls3[2], ls3[3]) = d.two_by_two(F1, d.frombits(log2_lo)) (ls3[4], ls3[5]) = d.two_by_two(F2, d.frombits(log2_hi)) var G1, G2 (G1, G2) = double_compensated_sum(ls3[0:6]) var base1 = exp(G1) var base2 = exp(G2) var pow_xen = xe * n var pow = pow_xen + I if pow_xen / n != xe || (I > 0 && d.imax - I < pow_xen) || (I < 0 && d.imin - I > pow_xen) /* The exponent overflowed. There's no way this is representable. We need to at least recover the correct sign. If the overflow was from the multiplication, then the sign we want is the sign that pow_xen should have been. If the overflow was from the addition, then we still want the sign that pow_xen should have had. */ if (xe > 0) == (n > 0) pow = 2 * d.emax else pow = 2 * d.emin ;; ;; -> ult_sgn * scale2(base1 * base2, pow) }