ref: dbe60482e84a28a55ae6d9f5a7c9728e00f690d3
dir: /lib/math/fpmath-sum-impl.myr/
use std pkg math = pkglocal const kahan_sum32 : (l : flt32[:] -> flt32) pkglocal const priest_sum32 : (l : flt32[:] -> flt32) pkglocal const kahan_sum64: (l : flt64[:] -> flt64) pkglocal const priest_sum64 : (l : flt64[:] -> flt64) ;; type doomed_flt32_arr = flt32[:] type doomed_flt64_arr = flt64[:] impl disposable doomed_flt32_arr = __dispose__ = {a : doomed_flt32_arr; std.slfree((a : flt32[:])) } ;; impl disposable doomed_flt64_arr = __dispose__ = {a : doomed_flt64_arr; std.slfree((a : flt64[:])) } ;; /* Kahan's compensated summation. Fast and reasonably accurate, although cancellation can cause relative error blowup. For something slower, but more accurate, use something like Priest's doubly compensated sums. */ pkglocal const kahan_sum32 = {l; -> kahan_sum_gen(l, (0.0 : flt32))} pkglocal const kahan_sum64 = {l; -> kahan_sum_gen(l, (0.0 : flt64))} generic kahan_sum_gen = {l : @f[:], zero : @f :: numeric,floating @f if l.len == 0 -> zero ;; var s = zero var c = zero var y = zero var t = zero for x : l y = x - c t = s + y c = (t - s) - y s = t ;; -> s } /* Priest's doubly compensated summation. Extremely accurate, but relatively slow. For situations in which cancellation is not expected, something like Kahan's compensated summation may be more useful. */ pkglocal const priest_sum32 = {l : flt32[:] var l2 = std.sldup(l) std.sort(l2, mag_cmp32) auto (l2 : doomed_flt32_arr) -> priest_sum_gen(l2, (0.0 : flt32)) } const mag_cmp32 = {f : flt32, g : flt32 var u = std.flt32bits(f) & ~(1 << 31) var v = std.flt32bits(g) & ~(1 << 31) -> std.numcmp(v, u) } pkglocal const priest_sum64 = {l : flt64[:] var l2 = std.sldup(l) std.sort(l, mag_cmp64) auto (l2 : doomed_flt64_arr) -> priest_sum_gen(l2, (0.0 : flt64)) } const mag_cmp64 = {f : flt64, g : flt64 var u = std.flt64bits(f) & ~(1 << 63) var v = std.flt64bits(g) & ~(1 << 63) -> std.numcmp(v, u) } generic priest_sum_gen = {l : @f[:], zero : @f :: numeric,floating @f /* l should be sorted in descending order */ if l.len == 0 -> zero ;; var s = zero var c = zero for x : l var y = c + x var u = x - (y - c) var t = (y + s) var v = (y - (t - s)) var z = u + v s = t + z c = z - (s - t) ;; -> s }