ref: 7c4d2abbe14d3d0e9d2f5872e0964677c5dc783d
dir: /lib/math/fpmath-sum-impl.myr/
use std
pkg math =
pkglocal const kahan_sum32 : (l : flt32[:] -> flt32)
pkglocal const priest_sum32 : (l : flt32[:] -> flt32)
pkglocal const kahan_sum64: (l : flt64[:] -> flt64)
pkglocal const priest_sum64 : (l : flt64[:] -> flt64)
;;
type doomed_flt32_arr = flt32[:]
type doomed_flt64_arr = flt64[:]
impl disposable doomed_flt32_arr =
__dispose__ = {a : doomed_flt32_arr; std.slfree((a : flt32[:])) }
;;
impl disposable doomed_flt64_arr =
__dispose__ = {a : doomed_flt64_arr; std.slfree((a : flt64[:])) }
;;
/*
Kahan's compensated summation. Fast and reasonably accurate,
although cancellation can cause relative error blowup. For
something slower, but more accurate, use something like Priest's
doubly compensated sums.
*/
pkglocal const kahan_sum32 = {l; -> kahan_sum_gen(l, (0.0 : flt32))}
pkglocal const kahan_sum64 = {l; -> kahan_sum_gen(l, (0.0 : flt64))}
generic kahan_sum_gen = {l : @f[:], zero : @f :: numeric,floating @f
if l.len == 0
-> zero
;;
var s = zero
var c = zero
var y = zero
var t = zero
for x : l
y = x - c
t = s + y
c = (t - s) - y
s = t
;;
-> s
}
/*
Priest's doubly compensated summation. Extremely accurate, but
relatively slow. For situations in which cancellation is not
expected, something like Kahan's compensated summation may be
more useful.
*/
pkglocal const priest_sum32 = {l : flt32[:]
var l2 = std.sldup(l)
std.sort(l2, mag_cmp32)
auto (l2 : doomed_flt32_arr)
-> priest_sum_gen(l2, (0.0 : flt32))
}
const mag_cmp32 = {f : flt32, g : flt32
var u = std.flt32bits(f) & ~(1 << 31)
var v = std.flt32bits(g) & ~(1 << 31)
-> std.numcmp(v, u)
}
pkglocal const priest_sum64 = {l : flt64[:]
var l2 = std.sldup(l)
std.sort(l, mag_cmp64)
auto (l2 : doomed_flt64_arr)
-> priest_sum_gen(l2, (0.0 : flt64))
}
const mag_cmp64 = {f : flt64, g : flt64
var u = std.flt64bits(f) & ~(1 << 63)
var v = std.flt64bits(g) & ~(1 << 63)
-> std.numcmp(v, u)
}
generic priest_sum_gen = {l : @f[:], zero : @f :: numeric,floating @f
/* l should be sorted in descending order */
if l.len == 0
-> zero
;;
var s = zero
var c = zero
for x : l
var y = c + x
var u = x - (y - c)
var t = (y + s)
var v = (y - (t - s))
var z = u + v
s = t + z
c = z - (s - t)
;;
-> s
}