ref: 7573519cae8033cd02fae85ae3b19e9dd59b61b7
dir: /parse/infer.c/
#include <stdlib.h>
#include <stdio.h>
#include <inttypes.h>
#include <inttypes.h>
#include <ctype.h>
#include <string.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <assert.h>
#include "parse.h"
typedef struct Inferstate Inferstate;
struct Inferstate {
int ingeneric;
int sawret;
int indentdepth;
Type *ret;
/* bound by patterns turn into decls in the action block */
Node **binds;
size_t nbinds;
/* nodes that need post-inference checking/unification */
Node **postcheck;
size_t npostcheck;
Stab **postcheckscope;
size_t npostcheckscope;
/* the type params bound at the current point */
Htab **tybindings;
size_t ntybindings;
/* generic declarations to be specialized */
Node **genericdecls;
size_t ngenericdecls;
/* delayed unification -- we fall back to these types in a post pass if we
* haven't unifed to something more specific */
Htab *delayed;
/* the nodes that we've specialized them to, and the scopes they
* appear in */
Node **specializations;
size_t nspecializations;
Stab **specializationscope;
size_t nspecializationscope;
};
static void infernode(Inferstate *st, Node *n, Type *ret, int *sawret);
static void inferexpr(Inferstate *st, Node *n, Type *ret, int *sawret);
static void inferdecl(Inferstate *st, Node *n);
static void typesub(Inferstate *st, Node *n);
static void tybind(Inferstate *st, Type *t);
static void bind(Inferstate *st, Node *n);
static void tyunbind(Inferstate *st, Type *t);
static void unbind(Inferstate *st, Node *n);
static Type *unify(Inferstate *st, Node *ctx, Type *a, Type *b);
static Type *tf(Inferstate *st, Type *t);
/* Tries to give a good string describing the context
* for the sake of error messages. */
static char *ctxstr(Inferstate *st, Node *n)
{
char *s;
char *t;
char *u;
char *idx;
char buf[512];
idx = NULL;
switch (n->type) {
default:
s = strdup(nodestr(n->type));
break;
case Ndecl:
u = declname(n);
t = tystr(tf(st, decltype(n)));
snprintf(buf, sizeof buf, "%s:%s", u, t);
s = strdup(buf);
free(t);
break;
case Nname:
s = strdup(namestr(n));
break;
case Nexpr:
if (n->expr.idx)
idx = ctxstr(st, n->expr.idx);
if (exprop(n) == Ovar)
u = namestr(n->expr.args[0]);
else
u = opstr(exprop(n));
if (exprtype(n))
t = tystr(tf(st, exprtype(n)));
else
t = strdup("unknown");
if (idx)
snprintf(buf, sizeof buf, ".%s=%s:%s", idx, u, t);
else
snprintf(buf, sizeof buf, "%s:%s", u, t);
free(idx);
free(t);
s = strdup(buf);
break;
}
return s;
}
static void addspecialization(Inferstate *st, Node *n, Stab *stab)
{
Node *dcl;
dcl = decls[n->expr.did];
lappend(&st->specializationscope, &st->nspecializationscope, stab);
lappend(&st->specializations, &st->nspecializations, n);
lappend(&st->genericdecls, &st->ngenericdecls, dcl);
}
static void delayedcheck(Inferstate *st, Node *n, Stab *s)
{
lappend(&st->postcheck, &st->npostcheck, n);
lappend(&st->postcheckscope, &st->npostcheckscope, s);
}
static void typeerror(Inferstate *st, Type *a, Type *b, Node *ctx, char *msg)
{
char *t1, *t2, *c;
t1 = tystr(a);
t2 = tystr(b);
c = ctxstr(st, ctx);
if (msg)
fatal(ctx, "Type \"%s\" incompatible with \"%s\" near %s: %s", t1, t2, c, msg);
else
fatal(ctx, "Type \"%s\" incompatible with \"%s\" near %s", t1, t2, c);
free(t1);
free(t2);
free(c);
}
/* Set a scope's enclosing scope up correctly.
* We don't do this in the parser for some reason. */
static void setsuper(Stab *st, Stab *super)
{
Stab *s;
/* verify that we don't accidentally create loops */
for (s = super; s; s = s->super)
assert(s->super != st);
st->super = super;
}
/* If the current environment binds a type,
* we return true */
static int isbound(Inferstate *st, Type *t)
{
ssize_t i;
Type *p;
for (i = st->ntybindings - 1; i >= 0; i--) {
p = htget(st->tybindings[i], t->pname);
if (p == t)
return 1;
}
return 0;
}
/* Checks if a type that directly contains itself.
* Recursive types that contain themselves through
* pointers or slices are fine, but any other self-inclusion
* would lead to a value of infinite size */
static int tyinfinite(Inferstate *st, Type *t, Type *sub)
{
size_t i;
assert(t != NULL);
if (t == sub) /* FIXME: is this actually right? */
return 1;
/* if we're on the first iteration, the subtype is the type
* itself. The assignment must come after the equality check
* for obvious reasons. */
if (!sub)
sub = t;
switch (sub->type) {
case Tystruct:
for (i = 0; i < sub->nmemb; i++)
if (tyinfinite(st, t, decltype(sub->sdecls[i])))
return 1;
break;
case Tyunion:
for (i = 0; i < sub->nmemb; i++) {
if (sub->udecls[i]->etype && tyinfinite(st, t, sub->udecls[i]->etype))
return 1;
}
break;
case Typtr:
case Tyslice:
return 0;
default:
for (i = 0; i < sub->nsub; i++)
if (tyinfinite(st, t, sub->sub[i]))
return 1;
break;
}
return 0;
}
static int needfreshen(Inferstate *st, Type *t)
{
size_t i;
switch (t->type) {
case Typaram: return 1;
case Tyname: return isgeneric(t);
case Tystruct:
for (i = 0; i < t->nmemb; i++)
if (needfreshen(st, decltype(t->sdecls[i])))
return 1;
break;
case Tyunion:
for (i = 0; i < t->nmemb; i++)
if (t->udecls[i]->etype && needfreshen(st, t->udecls[i]->etype))
return 1;
break;
default:
for (i = 0; i < t->nsub; i++)
if (needfreshen(st, t->sub[i]))
return 1;
break;
}
return 0;
}
/* Freshens the type of a declaration. */
static Type *tyfreshen(Inferstate *st, Type *t)
{
Htab *ht;
char *from, *to;
if (!needfreshen(st, t)) {
if (debugopt['u'])
indentf(st->indentdepth, "%s isn't generic: skipping freshen\n", tystr(t));
return t;
}
from = tystr(t);
tybind(st, t);
ht = mkht(tyhash, tyeq);
t = tyspecialize(t, ht, st->delayed);
htfree(ht);
tyunbind(st, t);
if (debugopt['u']) {
to = tystr(t);
indentf(st->indentdepth, "Freshen %s => %s\n", from, to);
free(from);
free(to);
}
return t;
}
/* Resolves a type and all it's subtypes recursively.*/
static void tyresolve(Inferstate *st, Type *t)
{
size_t i;
Type *base;
if (t->resolved)
return;
/* type resolution should never throw errors about non-generics
* showing up within a generic type, so we push and pop a generic
* around resolution */
st->ingeneric++;
t->resolved = 1;
/* Walk through aggregate type members */
if (t->type == Tystruct) {
for (i = 0; i < t->nmemb; i++)
infernode(st, t->sdecls[i], NULL, NULL);
} else if (t->type == Tyunion) {
for (i = 0; i < t->nmemb; i++) {
t->udecls[i]->utype = t;
t->udecls[i]->utype = tf(st, t->udecls[i]->utype);
if (t->udecls[i]->etype) {
tyresolve(st, t->udecls[i]->etype);
t->udecls[i]->etype = tf(st, t->udecls[i]->etype);
}
}
} else if (t->type == Tyarray) {
infernode(st, t->asize, NULL, NULL);
}
for (i = 0; i < t->nsub; i++)
t->sub[i] = tf(st, t->sub[i]);
base = tybase(t);
/* no-ops if base == t */
if (t->traits)
bsunion(t->traits, base->traits);
else
t->traits = bsdup(base->traits);
if (tyinfinite(st, t, NULL))
lfatal(t->loc, "Type %s includes itself", tystr(t));
st->ingeneric--;
}
/* Look up the best type to date in the unification table, returning it */
Type *tysearch(Type *t)
{
Type *lu;
Stab *ns;
assert(t != NULL);
lu = NULL;
while (1) {
if (!tytab[t->tid] && t->type == Tyunres) {
ns = curstab();
if (t->name->name.ns) {
ns = getns_str(ns, t->name->name.ns);
}
if (!ns)
fatal(t->name, "Could not resolve namespace \"%s\"", t->name->name.ns);
if (!(lu = gettype(ns, t->name)))
fatal(t->name, "Could not resolve type %s", tystr(t));
tytab[t->tid] = lu;
}
if (!tytab[t->tid])
break;
/* compress paths: shift the link up one level */
if (tytab[tytab[t->tid]->tid])
tytab[t->tid] = tytab[tytab[t->tid]->tid];
t = tytab[t->tid];
}
return t;
}
/* fixd the most accurate type mapping we have (ie,
* the end of the unification chain */
static Type *tf(Inferstate *st, Type *orig)
{
Type *t;
size_t i;
t = tysearch(orig);
st->ingeneric += isgeneric(orig);
tyresolve(st, t);
/* If this is an instantiation of a generic type, we want the params to
* match the instantiation */
if (orig->type == Tyunres && isgeneric(t)) {
t = tyfreshen(st, t);
for (i = 0; i < t->narg; i++) {
unify(st, NULL, t->arg[i], orig->arg[i]);
}
}
st->ingeneric -= isgeneric(orig);
return t;
}
/* set the type of any typable node */
static void settype(Inferstate *st, Node *n, Type *t)
{
t = tf(st, t);
switch (n->type) {
case Nexpr: n->expr.type = t; break;
case Ndecl: n->decl.type = t; break;
case Nlit: n->lit.type = t; break;
case Nfunc: n->func.type = t; break;
default:
die("untypable node %s", nodestr(n->type));
break;
}
}
/* Gets the type of a literal value */
static Type *littype(Node *n)
{
if (n->lit.type)
return n->lit.type;
switch (n->lit.littype) {
case Lchr: return mktype(n->loc, Tychar); break;
case Lbool: return mktype(n->loc, Tybool); break;
case Lint: return mktylike(n->loc, Tyint); break;
case Lflt: return mktylike(n->loc, Tyflt64); break;
case Lstr: return mktyslice(n->loc, mktype(n->loc, Tybyte)); break;
case Llbl: return mktyptr(n->loc, mktype(n->loc, Tyvoid)); break;
case Lfunc: return n->lit.fnval->func.type; break;
};
die("Bad lit type %d", n->lit.littype);
return NULL;
}
static Type *delayeducon(Inferstate *st, Type *fallback)
{
Type *t;
char *from, *to;
if (fallback->type != Tyunion)
return fallback;
t = mktylike(fallback->loc, fallback->type);
htput(st->delayed, t, fallback);
if (debugopt['u']) {
from = tystr(t);
to = tystr(fallback);
indentf(st->indentdepth, "Delay %s -> %s\n", from, to);
free(from);
free(to);
}
return t;
}
/* Finds the type of any typable node */
static Type *type(Inferstate *st, Node *n)
{
Type *t;
switch (n->type) {
case Nlit: t = littype(n); break;
case Nexpr: t = n->expr.type; break;
case Ndecl: t = decltype(n); break;
case Nfunc: t = n->func.type; break;
default:
t = NULL;
die("untypeable node %s", nodestr(n->type));
break;
};
return tf(st, t);
}
static Ucon *uconresolve(Inferstate *st, Node *n)
{
Ucon *uc;
Node **args;
Stab *ns;
args = n->expr.args;
ns = curstab();
if (args[0]->name.ns)
ns = getns_str(ns, args[0]->name.ns);
if (!ns)
fatal(n, "No namespace %s\n", args[0]->name.ns);
uc = getucon(ns, args[0]);
if (!uc)
fatal(n, "no union constructor `%s", ctxstr(st, args[0]));
if (!uc->etype && n->expr.nargs > 1)
fatal(n, "nullary union constructor `%s passed arg ", ctxstr(st, args[0]));
else if (uc->etype && n->expr.nargs != 2)
fatal(n, "union constructor `%s needs arg ", ctxstr(st, args[0]));
return uc;
}
/* Binds the type parameters present in the
* current type into the type environment */
static void putbindings(Inferstate *st, Htab *bt, Type *t)
{
size_t i;
char *s;
if (!t)
return;
if (t->type != Typaram)
return;
if (debugopt['u']) {
s = tystr(t);
indentf(st->indentdepth, "Bind %s\n", s);
free(s);
}
if (hthas(bt, t->pname))
unify(st, NULL, htget(bt, t->pname), t);
else if (isbound(st, t))
return;
htput(bt, t->pname, t);
for (i = 0; i < t->narg; i++)
putbindings(st, bt, t->arg[i]);
}
static void tybind(Inferstate *st, Type *t)
{
Htab *bt;
char *s;
if (t->type != Tyname && !isgeneric(t))
return;
if (debugopt['u']) {
s = tystr(t);
indentf(st->indentdepth, "Binding %s\n", s);
free(s);
}
bt = mkht(strhash, streq);
lappend(&st->tybindings, &st->ntybindings, bt);
putbindings(st, bt, t);
}
/* Binds the type parameters in the
* declaration into the type environment */
static void bind(Inferstate *st, Node *n)
{
Htab *bt;
assert(n->type == Ndecl);
if (!n->decl.isgeneric)
return;
if (!n->decl.init)
fatal(n, "generic %s has no initializer", n->decl);
st->ingeneric++;
bt = mkht(strhash, streq);
lappend(&st->tybindings, &st->ntybindings, bt);
putbindings(st, bt, n->decl.type);
putbindings(st, bt, n->decl.init->expr.type);
}
/* Rolls back the binding of type parameters in
* the type environment */
static void unbind(Inferstate *st, Node *n)
{
if (!n->decl.isgeneric)
return;
htfree(st->tybindings[st->ntybindings - 1]);
lpop(&st->tybindings, &st->ntybindings);
st->ingeneric--;
}
static void tyunbind(Inferstate *st, Type *t)
{
if (t->type != Tyname && !isgeneric(t))
return;
htfree(st->tybindings[st->ntybindings - 1]);
lpop(&st->tybindings, &st->ntybindings);
}
/* Constrains a type to implement the required constraints. On
* type variables, the constraint is added to the required
* constraint list. Otherwise, the type is checked to see
* if it has the required constraint */
static void constrain(Inferstate *st, Node *ctx, Type *a, Trait *c)
{
if (a->type == Tyvar) {
if (!a->traits)
a->traits = mkbs();
settrait(a, c);
} else if (!a->traits || !bshas(a->traits, c->uid)) {
fatal(ctx, "%s needs %s near %s", tystr(a), namestr(c->name), ctxstr(st, ctx));
}
}
/* does b satisfy all the constraints of a? */
static int checktraits(Type *a, Type *b)
{
/* a has no traits to satisfy */
if (!a->traits)
return 1;
/* b satisfies no traits; only valid if a requires none */
if (!b->traits)
return bscount(a->traits) == 0;
/* if a->traits is a subset of b->traits, all of
* a's constraints are satisfied by b. */
return bsissubset(a->traits, b->traits);
}
/* Merges the constraints on types */
static void mergetraits(Inferstate *st, Node *ctx, Type *a, Type *b)
{
size_t i, n;
char *sep;
char traitbuf[1024], abuf[1024], bbuf[1024];
if (b->type == Tyvar) {
/* make sure that if a = b, both have same traits */
if (a->traits && b->traits)
bsunion(b->traits, a->traits);
else if (a->traits)
b->traits = bsdup(a->traits);
else if (b->traits)
a->traits = bsdup(b->traits);
} else {
if (!checktraits(a, b)) {
sep = "";
n = 0;
for (i = 0; bsiter(a->traits, &i); i++) {
if (!b->traits || !bshas(b->traits, i))
n += snprintf(traitbuf + n, sizeof(traitbuf) - n, "%s%s", sep, namestr(traittab[i]->name));
sep = ",";
}
tyfmt(abuf, sizeof abuf, a);
tyfmt(bbuf, sizeof bbuf, b);
fatal(ctx, "%s missing traits %s for %s near %s", bbuf, traitbuf, abuf, ctxstr(st, ctx));
}
}
}
/* Tells us if we have an index hack on the type */
static int idxhacked(Type *a, Type *b)
{
return (a->type == Tyvar && a->nsub > 0) || a->type == Tyarray || a->type == Tyslice;
}
/* prevents types that contain themselves in the unification;
* eg @a U (@a -> foo) */
static int occurs(Type *a, Type *b)
{
size_t i;
if (a == b)
return 1;
for (i = 0; i < b->nsub; i++)
if (occurs(a, b->sub[i]))
return 1;
return 0;
}
/* Computes the 'rank' of the type; ie, in which
* direction should we unify. A lower ranked type
* should be mapped to the higher ranked (ie, more
* specific) type. */
static int tyrank(Type *t)
{
/* plain tyvar */
if (t->type == Tyvar && t->nsub == 0)
return 0;
/* parameterized tyvar */
if (t->type == Tyvar && t->nsub > 0)
return 1;
/* concrete type */
return 2;
}
static int hasparam(Type *t)
{
return t->type == Tyname && t->narg > 0;
}
static void unionunify(Inferstate *st, Node *ctx, Type *u, Type *v)
{
size_t i, j;
int found;
if (u->nmemb != v->nmemb)
fatal(ctx, "can't unify %s and %s near %s\n", tystr(u), tystr(v), ctxstr(st, ctx));
for (i = 0; i < u->nmemb; i++) {
found = 0;
for (j = 0; j < v->nmemb; j++) {
if (strcmp(namestr(u->udecls[i]->name), namestr(v->udecls[i]->name)) != 0)
continue;
found = 1;
if (u->udecls[i]->etype == NULL && v->udecls[i]->etype == NULL)
continue;
else if (u->udecls[i]->etype && v->udecls[i]->etype)
unify(st, ctx, u->udecls[i]->etype, v->udecls[i]->etype);
else
fatal(ctx, "can't unify %s and %s near %s\n", tystr(u), tystr(v), ctxstr(st, ctx));
}
if (!found)
fatal(ctx, "can't unify %s and %s near %s\n", tystr(u), tystr(v), ctxstr(st, ctx));
}
}
static void structunify(Inferstate *st, Node *ctx, Type *u, Type *v)
{
size_t i, j;
int found;
if (u->nmemb != v->nmemb)
fatal(ctx, "can't unify %s and %s near %s\n", tystr(u), tystr(v), ctxstr(st, ctx));
for (i = 0; i < u->nmemb; i++) {
found = 0;
for (j = 0; j < v->nmemb; j++) {
if (strcmp(namestr(u->sdecls[i]->decl.name), namestr(v->sdecls[i]->decl.name)) != 0)
continue;
found = 1;
unify(st, u->sdecls[i], type(st, u->sdecls[i]), type(st, v->sdecls[i]));
}
if (!found)
fatal(ctx, "can't unify %s and %s near %s\n", tystr(u), tystr(v), ctxstr(st, ctx));
}
}
static void membunify(Inferstate *st, Node *ctx, Type *u, Type *v) {
if (hthas(st->delayed, u))
u = htget(st->delayed, u);
u = tybase(u);
if (hthas(st->delayed, v))
v = htget(st->delayed, v);
v = tybase(v);
if (u->type == Tyunion && v->type == Tyunion && u != v)
unionunify(st, ctx, u, v);
else if (u->type == Tystruct && v->type == Tystruct && u != v)
structunify(st, ctx, u, v);
}
/* Unifies two types, or errors if the types are not unifiable. */
static Type *unify(Inferstate *st, Node *ctx, Type *u, Type *v)
{
Type *t, *r;
Type *a, *b;
char *from, *to;
char buf[256];
size_t i;
/* a ==> b */
a = tf(st, u);
b = tf(st, v);
if (a == b)
return a;
/* we unify from lower to higher ranked types */
if (tyrank(b) < tyrank(a)) {
t = a;
a = b;
b = t;
}
if (debugopt['u']) {
from = tystr(a);
to = tystr(b);
indentf(st->indentdepth, "Unify %s => %s\n", from, to);
free(from);
free(to);
}
r = NULL;
if (a->type == Tyvar) {
tytab[a->tid] = b;
r = b;
}
/* Disallow recursive types */
if (a->type == Tyvar && b->type != Tyvar) {
if (occurs(a, b))
typeerror(st, a, b, ctx, "Infinite type\n");
}
/* if the tyrank of a is 0 (ie, a raw tyvar), just unify.
* Otherwise, match up subtypes. */
if ((a->type == b->type || idxhacked(a, b)) && tyrank(a) != 0) {
if (a->type == Tyname && !nameeq(a->name, b->name))
typeerror(st, a, b, ctx, NULL);
if (a->nsub != b->nsub) {
snprintf(buf, sizeof buf, "Wrong subtype count - Got %zu, expected %zu", a->nsub, b->nsub);
typeerror(st, a, b, ctx, buf);
}
for (i = 0; i < b->nsub; i++)
unify(st, ctx, a->sub[i], b->sub[i]);
r = b;
} else if (hasparam(a) && hasparam(b)) {
/* Only Tygeneric and Tyname should be able to unify. And they
* should have the same names for this to be true. */
if (!nameeq(a->name, b->name))
typeerror(st, a, b, ctx, NULL);
if (a->narg != b->narg)
typeerror(st, a, b, ctx, "Incompatible parameter lists");
for (i = 0; i < a->narg; i++)
unify(st, ctx, a->arg[i], b->arg[i]);
} else if (a->type != Tyvar) {
typeerror(st, a, b, ctx, NULL);
}
mergetraits(st, ctx, a, b);
membunify(st, ctx, a, b);
/* if we have delayed types for a tyvar, transfer it over. */
if (a->type == Tyvar && b->type == Tyvar) {
if (hthas(st->delayed, a) && !hthas(st->delayed, b))
htput(st->delayed, b, htget(st->delayed, a));
else if (hthas(st->delayed, b) && !hthas(st->delayed, a))
htput(st->delayed, a, htget(st->delayed, b));
} else if (hthas(st->delayed, a)) {
unify(st, ctx, htget(st->delayed, a), tybase(b));
}
return r;
}
/* Applies unifications to function calls.
* Funciton application requires a slightly
* different approach to unification. */
static void unifycall(Inferstate *st, Node *n)
{
size_t i;
Type *ft;
char *ret, *ctx;
ft = type(st, n->expr.args[0]);
if (ft->type == Tyvar) {
/* the first arg is the function itself, so it shouldn't be counted */
ft = mktyfunc(n->loc, &n->expr.args[1], n->expr.nargs - 1, mktyvar(n->loc));
unify(st, n, ft, type(st, n->expr.args[0]));
} else if (tybase(ft)->type != Tyfunc) {
fatal(n, "calling uncallable type %s", tystr(ft));
}
for (i = 1; i < n->expr.nargs; i++) {
if (i == ft->nsub)
fatal(n, "%s arity mismatch (expected %zd args, got %zd)",
ctxstr(st, n->expr.args[0]), ft->nsub - 1, n->expr.nargs - 1);
if (ft->sub[i]->type == Tyvalist)
break;
inferexpr(st, n->expr.args[i], NULL, NULL);
unify(st, n->expr.args[0], ft->sub[i], type(st, n->expr.args[i]));
}
if (i < ft->nsub && ft->sub[i]->type != Tyvalist)
fatal(n, "%s arity mismatch (expected %zd args, got %zd)",
ctxstr(st, n->expr.args[0]), ft->nsub - 1, i - 1);
if (debugopt['u']) {
ret = tystr(ft->sub[0]);
ctx = ctxstr(st, n->expr.args[0]);
indentf(st->indentdepth, "Call of %s returns %s\n", ctx, ret);
free(ctx);
free(ret);
}
settype(st, n, ft->sub[0]);
}
static void unifyparams(Inferstate *st, Node *ctx, Type *a, Type *b)
{
size_t i;
/* The only types with unifiable params are Tyunres and Tyname.
* Tygeneric should always be freshened, and no other types have
* parameters attached.
*
* FIXME: Is it possible to have parameterized typarams? */
if (a->type != Tyunres && a->type != Tyname)
return;
if (b->type != Tyunres && b->type != Tyname)
return;
if (a->narg != b->narg)
fatal(ctx, "Mismatched parameter list sizes: %s with %s near %s", tystr(a), tystr(b), ctxstr(st, ctx));
for (i = 0; i < a->narg; i++)
unify(st, ctx, a->arg[i], b->arg[i]);
}
static void loaduses(Node *n)
{
size_t i;
/* uses only allowed at top level. Do we want to keep it this way? */
for (i = 0; i < n->file.nuses; i++)
readuse(n->file.uses[i], n->file.globls, Visintern);
}
static Type *initvar(Inferstate *st, Node *n, Node *s)
{
Type *t;
if (s->decl.ishidden)
fatal(n, "attempting to refer to hidden decl %s", ctxstr(st, n));
if (s->decl.isgeneric)
t = tyfreshen(st, tf(st, s->decl.type));
else
t = s->decl.type;
n->expr.did = s->decl.did;
n->expr.isconst = s->decl.isconst;
if (s->decl.isgeneric && !st->ingeneric) {
addspecialization(st, n, curstab());
if (t->type == Tyvar) {
settype(st, n, mktyvar(n->loc));
delayedcheck(st, n, curstab());
} else {
settype(st, n, t);
}
} else {
settype(st, n, t);
}
return t;
}
/* Finds out if the member reference is actually
* referring to a namespaced name, instead of a struct
* member. If it is, it transforms it into the variable
* reference we should have, instead of the Omemb expr
* that we do have */
static void checkns(Inferstate *st, Node *n, Node **ret)
{
Node *var, *name, *nsname;
Node **args;
Stab *stab;
Node *s;
/* check that this is a namespaced declaration */
if (n->type != Nexpr)
return;
if (exprop(n) != Omemb)
return;
if (!n->expr.nargs)
return;
args = n->expr.args;
if (args[0]->type != Nexpr || exprop(args[0]) != Ovar)
return;
name = args[0]->expr.args[0];
stab = getns(curstab(), name);
if (!stab)
return;
/* substitute the namespaced name */
nsname = mknsname(n->loc, namestr(name), namestr(args[1]));
s = getdcl(stab, args[1]);
if (!s)
fatal(n, "Undeclared var %s.%s", nsname->name.ns, nsname->name.name);
var = mkexpr(n->loc, Ovar, nsname, NULL);
var->expr.idx = n->expr.idx;
initvar(st, var, s);
*ret = var;
}
static void inferstruct(Inferstate *st, Node *n, int *isconst)
{
size_t i;
*isconst = 1;
for (i = 0; i < n->expr.nargs; i++) {
infernode(st, n->expr.args[i], NULL, NULL);
if (!n->expr.args[i]->expr.isconst)
*isconst = 0;
}
settype(st, n, mktyvar(n->loc));
delayedcheck(st, n, curstab());
}
static void inferarray(Inferstate *st, Node *n, int *isconst)
{
size_t i;
Type *t;
Node *len;
*isconst = 1;
len = mkintlit(n->loc, n->expr.nargs);
t = mktyarray(n->loc, mktyvar(n->loc), len);
for (i = 0; i < n->expr.nargs; i++) {
infernode(st, n->expr.args[i], NULL, NULL);
unify(st, n, t->sub[0], type(st, n->expr.args[i]));
if (!n->expr.args[i]->expr.isconst)
*isconst = 0;
}
settype(st, n, t);
}
static void infertuple(Inferstate *st, Node *n, int *isconst)
{
Type **types;
size_t i;
*isconst = 1;
types = xalloc(sizeof(Type *)*n->expr.nargs);
for (i = 0; i < n->expr.nargs; i++) {
infernode(st, n->expr.args[i], NULL, NULL);
n->expr.isconst = n->expr.isconst && n->expr.args[i]->expr.isconst;
types[i] = type(st, n->expr.args[i]);
}
*isconst = n->expr.isconst;
settype(st, n, mktytuple(n->loc, types, n->expr.nargs));
}
static void inferucon(Inferstate *st, Node *n, int *isconst)
{
Ucon *uc;
Type *t;
uc = uconresolve(st, n);
t = tyfreshen(st, tf(st, uc->utype));
uc = tybase(t)->udecls[uc->id];
if (uc->etype) {
checkns(st, n->expr.args[1], &n->expr.args[1]);
inferexpr(st, n->expr.args[1], NULL, NULL);
unify(st, n, uc->etype, type(st, n->expr.args[1]));
}
*isconst = n->expr.args[0]->expr.isconst;
settype(st, n, delayeducon(st, t));
}
static void inferpat(Inferstate *st, Node *n, Node *val, Node ***bind, size_t *nbind)
{
size_t i;
Node **args;
Node *s;
Type *t;
args = n->expr.args;
for (i = 0; i < n->expr.nargs; i++)
if (args[i]->type == Nexpr)
inferpat(st, args[i], val, bind, nbind);
switch (exprop(n)) {
case Otup:
case Ostruct:
case Oarr:
case Olit:
case Omemb:
infernode(st, n, NULL, NULL); break;
/* arithmetic expressions just need to be constant */
case Oneg:
case Oadd:
case Osub:
case Omul:
case Odiv:
case Obsl:
case Obsr:
case Oband:
case Obor:
case Obxor:
case Obnot:
infernode(st, n, NULL, NULL);
if (!n->expr.isconst)
fatal(n, "matching against non-constant expression");
break;
case Oucon: inferucon(st, n, &n->expr.isconst); break;
case Ovar:
s = getdcl(curstab(), args[0]);
if (s && !s->decl.ishidden) {
if (s->decl.isgeneric)
t = tyfreshen(st, s->decl.type);
else if (s->decl.isconst)
t = s->decl.type;
else
fatal(n, "Can't match against non-constant variables near %s", ctxstr(st, n));
} else {
t = mktyvar(n->loc);
s = mkdecl(n->loc, n->expr.args[0], t);
s->decl.init = val;
settype(st, n, t);
lappend(bind, nbind, s);
}
settype(st, n, t);
n->expr.did = s->decl.did;
break;
default:
fatal(n, "invalid pattern");
break;
}
}
void addbindings(Inferstate *st, Node *n, Node **bind, size_t nbind)
{
size_t i;
/* order of binding shouldn't matter, so push them into the block
* in reverse order. */
for (i = 0; i < nbind; i++) {
putdcl(n->block.scope, bind[i]);
linsert(&n->block.stmts, &n->block.nstmts, 0, bind[i]);
}
}
static void infersub(Inferstate *st, Node *n, Type *ret, int *sawret, int *exprconst)
{
Node **args;
size_t i, nargs;
int isconst;
args = n->expr.args;
nargs = n->expr.nargs;
isconst = 1;
for (i = 0; i < nargs; i++) {
/* Nlit, Nvar, etc should not be inferred as exprs */
if (args[i]->type == Nexpr) {
/* Omemb can sometimes resolve to a namespace. We have to check
* this. Icky. */
checkns(st, args[i], &args[i]);
inferexpr(st, args[i], ret, sawret);
isconst = isconst && args[i]->expr.isconst;
}
}
if (exprop(n) == Ovar)
n->expr.isconst = decls[n->expr.did]->decl.isconst;
else if (ispureop[exprop(n)])
n->expr.isconst = isconst;
*exprconst = n->expr.isconst;
}
static void inferexpr(Inferstate *st, Node *n, Type *ret, int *sawret)
{
Node **args;
size_t i, nargs;
Node *s;
Type *t;
int isconst;
assert(n->type == Nexpr);
args = n->expr.args;
nargs = n->expr.nargs;
infernode(st, n->expr.idx, NULL, NULL);
for (i = 0; i < nargs; i++)
if (args[i]->type == Nexpr && exprop(args[i]) == Omemb)
checkns(st, args[i], &args[i]);
switch (exprop(n)) {
/* all operands are same type */
case Oadd: /* @a + @a -> @a */
case Osub: /* @a - @a -> @a */
case Omul: /* @a * @a -> @a */
case Odiv: /* @a / @a -> @a */
case Oneg: /* -@a -> @a */
infersub(st, n, ret, sawret, &isconst);
t = type(st, args[0]);
constrain(st, n, type(st, args[0]), traittab[Tcnum]);
isconst = args[0]->expr.isconst;
for (i = 1; i < nargs; i++) {
isconst = isconst && args[i]->expr.isconst;
t = unify(st, n, t, type(st, args[i]));
}
n->expr.isconst = isconst;
settype(st, n, t);
break;
case Omod: /* @a % @a -> @a */
case Obor: /* @a | @a -> @a */
case Oband: /* @a & @a -> @a */
case Obxor: /* @a ^ @a -> @a */
case Obsl: /* @a << @a -> @a */
case Obsr: /* @a >> @a -> @a */
case Obnot: /* ~@a -> @a */
case Opreinc: /* ++@a -> @a */
case Opredec: /* --@a -> @a */
case Opostinc: /* @a++ -> @a */
case Opostdec: /* @a-- -> @a */
case Oaddeq: /* @a += @a -> @a */
case Osubeq: /* @a -= @a -> @a */
case Omuleq: /* @a *= @a -> @a */
case Odiveq: /* @a /= @a -> @a */
case Omodeq: /* @a %= @a -> @a */
case Oboreq: /* @a |= @a -> @a */
case Obandeq: /* @a &= @a -> @a */
case Obxoreq: /* @a ^= @a -> @a */
case Obsleq: /* @a <<= @a -> @a */
case Obsreq: /* @a >>= @a -> @a */
infersub(st, n, ret, sawret, &isconst);
t = type(st, args[0]);
constrain(st, n, type(st, args[0]), traittab[Tcnum]);
constrain(st, n, type(st, args[0]), traittab[Tcint]);
isconst = args[0]->expr.isconst;
for (i = 1; i < nargs; i++) {
isconst = isconst && args[i]->expr.isconst;
t = unify(st, n, t, type(st, args[i]));
}
n->expr.isconst = isconst;
settype(st, n, t);
break;
case Oasn: /* @a = @a -> @a */
infersub(st, n, ret, sawret, &isconst);
t = type(st, args[0]);
for (i = 1; i < nargs; i++)
t = unify(st, n, t, type(st, args[i]));
settype(st, n, t);
if (args[0]->expr.isconst)
fatal(n, "attempting to assign constant \"%s\"", ctxstr(st, args[0]));
break;
/* operands same type, returning bool */
case Olor: /* @a || @b -> bool */
case Oland: /* @a && @b -> bool */
case Oeq: /* @a == @a -> bool */
case One: /* @a != @a -> bool */
case Ogt: /* @a > @a -> bool */
case Oge: /* @a >= @a -> bool */
case Olt: /* @a < @a -> bool */
case Ole: /* @a <= @b -> bool */
infersub(st, n, ret, sawret, &isconst);
t = type(st, args[0]);
for (i = 1; i < nargs; i++)
unify(st, n, t, type(st, args[i]));
settype(st, n, mktype(Zloc, Tybool));
break;
case Olnot: /* !bool -> bool */
infersub(st, n, ret, sawret, &isconst);
t = unify(st, n, type(st, args[0]), mktype(Zloc, Tybool));
settype(st, n, t);
break;
/* reach into a type and pull out subtypes */
case Oaddr: /* &@a -> @a* */
infersub(st, n, ret, sawret, &isconst);
settype(st, n, mktyptr(n->loc, type(st, args[0])));
break;
case Oderef: /* *@a* -> @a */
infersub(st, n, ret, sawret, &isconst);
t = unify(st, n, type(st, args[0]), mktyptr(n->loc, mktyvar(n->loc)));
settype(st, n, t->sub[0]);
break;
case Oidx: /* @a[@b::tcint] -> @a */
infersub(st, n, ret, sawret, &isconst);
t = mktyidxhack(n->loc, mktyvar(n->loc));
unify(st, n, type(st, args[0]), t);
constrain(st, n, type(st, args[0]), traittab[Tcidx]);
constrain(st, n, type(st, args[1]), traittab[Tcint]);
settype(st, n, t->sub[0]);
break;
case Oslice: /* @a[@b::tcint,@b::tcint] -> @a[,] */
infersub(st, n, ret, sawret, &isconst);
t = mktyidxhack(n->loc, mktyvar(n->loc));
unify(st, n, type(st, args[0]), t);
constrain(st, n, type(st, args[1]), traittab[Tcint]);
constrain(st, n, type(st, args[2]), traittab[Tcint]);
settype(st, n, mktyslice(n->loc, t->sub[0]));
break;
/* special cases */
case Omemb: /* @a.Ident -> @b, verify type(@a.Ident)==@b later */
infersub(st, n, ret, sawret, &isconst);
settype(st, n, mktyvar(n->loc));
delayedcheck(st, n, curstab());
break;
case Osize: /* sizeof @a -> size */
infersub(st, n, ret, sawret, &isconst);
settype(st, n, mktylike(n->loc, Tyuint));
break;
case Ocall: /* (@a, @b, @c, ... -> @r)(@a,@b,@c, ... -> @r) -> @r */
infersub(st, n, ret, sawret, &isconst);
unifycall(st, n);
break;
case Ocast: /* cast(@a, @b) -> @b */
infersub(st, n, ret, sawret, &isconst);
delayedcheck(st, n, curstab());
break;
case Oret: /* -> @a -> void */
infersub(st, n, ret, sawret, &isconst);
if (sawret)
*sawret = 1;
if (!ret)
fatal(n, "Not allowed to return value here");
if (nargs)
t = unify(st, n, ret, type(st, args[0]));
else
t = unify(st, n, mktype(Zloc, Tyvoid), ret);
settype(st, n, t);
break;
case Obreak:
case Ocontinue:
/* nullary: nothing to infer. */
settype(st, n, mktype(Zloc, Tyvoid));
break;
case Ojmp: /* goto void* -> void */
infersub(st, n, ret, sawret, &isconst);
settype(st, n, mktype(Zloc, Tyvoid));
break;
case Ovar: /* a:@a -> @a */
infersub(st, n, ret, sawret, &isconst);
/* if we created this from a namespaced var, the type should be
* set, and the normal lookup is expected to fail. Since we're
* already done with this node, we can just return. */
if (n->expr.type)
return;
s = getdcl(curstab(), args[0]);
if (!s)
fatal(n, "Undeclared var %s", ctxstr(st, args[0]));
initvar(st, n, s);
break;
case Oucon:
inferucon(st, n, &n->expr.isconst);
break;
case Otup:
infertuple(st, n, &n->expr.isconst);
break;
case Ostruct:
inferstruct(st, n, &n->expr.isconst);
break;
case Oarr:
inferarray(st, n, &n->expr.isconst);
break;
case Olit: /* <lit>:@a::tyclass -> @a */
infersub(st, n, ret, sawret, &isconst);
switch (args[0]->lit.littype) {
case Lfunc:
infernode(st, args[0]->lit.fnval, NULL, NULL); break;
/* FIXME: env capture means this is non-const */
n->expr.isconst = 1;
default:
n->expr.isconst = 1;
break;
}
settype(st, n, type(st, args[0]));
break;
case Obad: case Ocjmp: case Ojtab: case Oset:
case Oslbase: case Osllen: case Outag:
case Oblit: case Numops:
case Otrunc: case Oswiden: case Ozwiden:
case Oint2flt: case Oflt2int: case Oflt2flt:
case Ofadd: case Ofsub: case Ofmul: case Ofdiv: case Ofneg:
case Ofeq: case Ofne: case Ofgt: case Ofge: case Oflt: case Ofle:
case Oueq: case Oune: case Ougt: case Ouge: case Oult: case Oule:
case Oudata:
die("Should not see %s in fe", opstr(exprop(n)));
break;
}
}
static void inferfunc(Inferstate *st, Node *n)
{
size_t i;
int sawret;
sawret = 0;
for (i = 0; i < n->func.nargs; i++)
infernode(st, n->func.args[i], NULL, NULL);
infernode(st, n->func.body, n->func.type->sub[0], &sawret);
/* if there's no return stmt in the function, assume void ret */
if (!sawret)
unify(st, n, type(st, n)->sub[0], mktype(Zloc, Tyvoid));
}
static void specializeimpl(Inferstate *st, Node *n)
{
Node *dcl, *proto, *name;
Htab *ht;
Trait *t;
Type *ty;
size_t i, j;
t = gettrait(curstab(), n->impl.traitname);
if (!t)
fatal(n, "No trait %s\n", namestr(n->impl.traitname));
n->impl.trait = t;
dcl = NULL;
proto = NULL;
for (i = 0; i < n->impl.ndecls; i++) {
/* look up the prototype */
proto = NULL;
dcl = n->impl.decls[i];
/*
since the decls in an impl are not installed in a namespace, their names
are not updated when we call updatens() on the symbol table. Because we need
to do namespace dependent comparisons for specializing, we need to set the
namespace here.
*/
if (file->file.globls->name)
setns(dcl->decl.name, namestr(file->file.globls->name));
for (j = 0; j < t->nfuncs; j++) {
if (nameeq(dcl->decl.name, t->funcs[j]->decl.name)) {
proto = t->funcs[j];
break;
}
}
if (!proto)
fatal(n, "Declaration %s missing in %s, near %s\n",
namestr(dcl->decl.name), namestr(t->name), ctxstr(st, n));
/* infer and unify types */
checktraits(t->param, n->impl.type);
ht = mkht(tyhash, tyeq);
htput(ht, t->param, n->impl.type);
ty = tyspecialize(type(st, proto), ht, st->delayed);
htfree(ht);
inferdecl(st, dcl);
unify(st, n, type(st, dcl), ty);
/* and put the specialization into the global stab */
name = genericname(proto, ty);
dcl->decl.name = name;
putdcl(file->file.globls, dcl);
if (debugopt['S'])
printf("specializing trait [%d]%s:%s => %s:%s\n",
n->loc.line, namestr(proto->decl.name), tystr(type(st, proto)), namestr(name), tystr(ty));
lappend(&file->file.stmts, &file->file.nstmts, dcl);
}
}
static void inferdecl(Inferstate *st, Node *n)
{
Type *t;
t = tf(st, decltype(n));
if (t->type == Tyname && isgeneric(t) && !n->decl.isgeneric) {
t = tyfreshen(st, t);
unifyparams(st, n, t, decltype(n));
}
settype(st, n, t);
if (n->decl.init) {
checkns(st, n->decl.init, &n->decl.init);
inferexpr(st, n->decl.init, NULL, NULL);
unify(st, n, type(st, n), type(st, n->decl.init));
if (n->decl.isconst && !n->decl.init->expr.isconst)
fatal(n, "non-const initializer for \"%s\"", ctxstr(st, n));
} else {
if ((n->decl.isconst || n->decl.isgeneric) && !n->decl.isextern)
fatal(n, "non-extern \"%s\" has no initializer", ctxstr(st, n));
}
}
static void inferstab(Inferstate *st, Stab *s)
{
void **k;
size_t n, i;
Type *t;
k = htkeys(s->ty, &n);
for (i = 0; i < n; i++) {
t = gettype(s, k[i]);
if (!t)
fatal(k[i], "undefined type %s", namestr(k[i]));
t = tysearch(t);
updatetype(s, k[i], t);
}
free(k);
}
static void infernode(Inferstate *st, Node *n, Type *ret, int *sawret)
{
size_t i, nbound;
Node **bound;
Type *t;
if (!n)
return;
switch (n->type) {
case Nfile:
pushstab(n->file.globls);
inferstab(st, n->file.globls);
for (i = 0; i < n->file.nstmts; i++)
infernode(st, n->file.stmts[i], NULL, sawret);
popstab();
break;
case Ndecl:
if (debugopt['u'])
indentf(st->indentdepth, "--- infer %s ---\n", declname(n));
st->indentdepth++;
bind(st, n);
inferdecl(st, n);
if (type(st, n)->type == Typaram && !st->ingeneric)
fatal(n, "Generic type %s in non-generic near %s\n", tystr(type(st, n)), ctxstr(st, n));
unbind(st, n);
st->indentdepth--;
if (debugopt['u'])
indentf(st->indentdepth, "--- done ---\n");
break;
case Nblock:
setsuper(n->block.scope, curstab());
pushstab(n->block.scope);
inferstab(st, n->block.scope);
for (i = 0; i < n->block.nstmts; i++) {
checkns(st, n->block.stmts[i], &n->block.stmts[i]);
infernode(st, n->block.stmts[i], ret, sawret);
}
popstab();
break;
case Nifstmt:
infernode(st, n->ifstmt.cond, NULL, sawret);
infernode(st, n->ifstmt.iftrue, ret, sawret);
infernode(st, n->ifstmt.iffalse, ret, sawret);
unify(st, n, type(st, n->ifstmt.cond), mktype(n->loc, Tybool));
break;
case Nloopstmt:
infernode(st, n->loopstmt.init, ret, sawret);
infernode(st, n->loopstmt.cond, NULL, sawret);
infernode(st, n->loopstmt.step, ret, sawret);
infernode(st, n->loopstmt.body, ret, sawret);
unify(st, n, type(st, n->loopstmt.cond), mktype(n->loc, Tybool));
break;
case Niterstmt:
bound = NULL;
nbound = 0;
inferpat(st, n->iterstmt.elt, NULL, &bound, &nbound);
addbindings(st, n->iterstmt.body, bound, nbound);
checkns(st, n->iterstmt.seq, &n->iterstmt.seq);
infernode(st, n->iterstmt.seq, NULL, sawret);
infernode(st, n->iterstmt.body, ret, sawret);
t = mktyidxhack(n->loc, mktyvar(n->loc));
constrain(st, n, type(st, n->iterstmt.seq), traittab[Tcidx]);
unify(st, n, type(st, n->iterstmt.seq), t);
unify(st, n, type(st, n->iterstmt.elt), t->sub[0]);
break;
case Nmatchstmt:
infernode(st, n->matchstmt.val, NULL, sawret);
if (tybase(type(st, n->matchstmt.val))->type == Tyvoid)
fatal(n, "Can't match against a void type near %s", ctxstr(st, n->matchstmt.val));
for (i = 0; i < n->matchstmt.nmatches; i++) {
infernode(st, n->matchstmt.matches[i], ret, sawret);
unify(st, n, type(st, n->matchstmt.val), type(st, n->matchstmt.matches[i]->match.pat));
}
break;
case Nmatch:
bound = NULL;
nbound = 0;
inferpat(st, n->match.pat, NULL, &bound, &nbound);
addbindings(st, n->match.block, bound, nbound);
infernode(st, n->match.block, ret, sawret);
break;
case Nexpr:
inferexpr(st, n, ret, sawret);
break;
case Nfunc:
setsuper(n->func.scope, curstab());
if (st->ntybindings > 0)
for (i = 0; i < n->func.nargs; i++)
putbindings(st, st->tybindings[st->ntybindings - 1], n->func.args[i]->decl.type);
pushstab(n->func.scope);
inferstab(st, n->func.scope);
inferfunc(st, n);
popstab();
break;
case Nimpl:
specializeimpl(st, n);
break;
case Nname:
case Nlit:
case Nuse:
break;
case Nnone:
die("Nnone should not be seen as node type!");
break;
}
}
/* returns the final type for t, after all unifications
* and default constraint selections */
static Type *tyfix(Inferstate *st, Node *ctx, Type *orig)
{
static Type *tyint, *tyflt;
Type *t, *delayed;
char *from, *to;
size_t i;
char buf[1024];
if (!tyint)
tyint = mktype(Zloc, Tyint);
if (!tyflt)
tyflt = mktype(Zloc, Tyflt64);
t = tysearch(orig);
if (orig->type == Tyvar && hthas(st->delayed, orig)) {
delayed = htget(st->delayed, orig);
if (t->type == Tyvar)
t = delayed;
else if (tybase(t)->type != delayed->type)
fatal(ctx, "Type %s not compatible with %s near %s\n", tystr(t), tystr(delayed), ctxstr(st, ctx));
}
if (t->type == Tyvar) {
if (hastrait(t, traittab[Tcint]) && checktraits(t, tyint))
t = tyint;
if (hastrait(t, traittab[Tcfloat]) && checktraits(t, tyflt))
t = tyflt;
} else if (!t->fixed) {
t->fixed = 1;
if (t->type == Tyarray) {
typesub(st, t->asize);
} else if (t->type == Tystruct) {
for (i = 0; i < t->nmemb; i++)
typesub(st, t->sdecls[i]);
} else if (t->type == Tyunion) {
for (i = 0; i < t->nmemb; i++) {
if (t->udecls[i]->etype)
t->udecls[i]->etype = tyfix(st, ctx, t->udecls[i]->etype);
}
} else if (t->type == Tyname) {
for (i = 0; i < t->narg; i++)
t->arg[i] = tyfix(st, ctx, t->arg[i]);
}
for (i = 0; i < t->nsub; i++)
t->sub[i] = tyfix(st, ctx, t->sub[i]);
}
if (t->type == Tyvar) {
if (debugopt['T'])
dump(file, stdout);
lfatal(t->loc, "underconstrained type %s near %s", tyfmt(buf, 1024, t), ctxstr(st, ctx));
}
if (debugopt['u'] && !tyeq(orig, t)) {
from = tystr(orig);
to = tystr(t);
indentf(st->indentdepth, "subst %s => %s\n", from, to);
free(from);
free(to);
}
return t;
}
static void checkcast(Inferstate *st, Node *n)
{
/* FIXME: actually verify the casts. Right now, it's ok to leave this
* unimplemented because bad casts get caught by the backend. */
}
static void infercompn(Inferstate *st, Node *n)
{
Node *aggr;
Node *memb;
Node **nl;
Type *t;
size_t i;
int found;
aggr = n->expr.args[0];
memb = n->expr.args[1];
found = 0;
t = tybase(tf(st, type(st, aggr)));
/* all array-like types have a fake "len" member that we emulate */
if (t->type == Tyslice || t->type == Tyarray) {
if (!strcmp(namestr(memb), "len")) {
constrain(st, n, type(st, n), traittab[Tcnum]);
constrain(st, n, type(st, n), traittab[Tcint]);
found = 1;
}
/* otherwise, we search aggregate types for the member, and unify
* the expression with the member type; ie:
*
* x: aggrtype y : memb in aggrtype
* ---------------------------------------
* x.y : membtype
*/
} else {
if (tybase(t)->type == Typtr)
t = tybase(tf(st, t->sub[0]));
if (tybase(t)->type != Tystruct)
fatal(n, "type %s does not support member operators near %s", tystr(t), ctxstr(st, n));
nl = t->sdecls;
for (i = 0; i < t->nmemb; i++) {
if (!strcmp(namestr(memb), declname(nl[i]))) {
unify(st, n, type(st, n), decltype(nl[i]));
found = 1;
break;
}
}
}
if (!found)
fatal(aggr, "Type %s has no member \"%s\" near %s",
tystr(type(st, aggr)), ctxstr(st, memb), ctxstr(st, aggr));
}
static void checkstruct(Inferstate *st, Node *n)
{
Type *t, *et;
Node *val, *name;
size_t i, j;
t = tybase(tf(st, n->lit.type));
if (t->type != Tystruct)
fatal(n, "Type %s for struct literal is not struct near %s", tystr(t), ctxstr(st, n));
for (i = 0; i < n->expr.nargs; i++) {
val = n->expr.args[i];
name = val->expr.idx;
et = NULL;
for (j = 0; j < t->nmemb; j++) {
if (!strcmp(namestr(t->sdecls[j]->decl.name), namestr(name))) {
et = type(st, t->sdecls[j]);
break;
}
}
if (!et)
fatal(n, "Could not find member %s in struct %s, near %s",
namestr(name), tystr(t), ctxstr(st, n));
unify(st, val, et, type(st, val));
}
}
static void checkvar(Inferstate *st, Node *n)
{
Node *dcl;
dcl = decls[n->expr.did];
unify(st, n, type(st, n), tyfreshen(st, type(st, dcl)));
}
static void postcheck(Inferstate *st, Node *file)
{
size_t i;
Node *n;
for (i = 0; i < st->npostcheck; i++) {
n = st->postcheck[i];
pushstab(st->postcheckscope[i]);
if (n->type == Nexpr && exprop(n) == Omemb)
infercompn(st, n);
else if (n->type == Nexpr && exprop(n) == Ocast)
checkcast(st, n);
else if (n->type == Nexpr && exprop(n) == Ostruct)
checkstruct(st, n);
else if (n->type == Nexpr && exprop(n) == Ovar)
checkvar(st, n);
else
die("Thing we shouldn't be checking in postcheck\n");
popstab();
}
}
/* After inference, replace all
* types in symbol tables with
* the final computed types */
static void stabsub(Inferstate *st, Stab *s)
{
void **k;
size_t n, i;
Type *t;
Node *d;
k = htkeys(s->ty, &n);
for (i = 0; i < n; i++) {
t = tysearch(gettype(s, k[i]));
updatetype(s, k[i], t);
tyfix(st, k[i], t);
}
free(k);
k = htkeys(s->dcl, &n);
for (i = 0; i < n; i++) {
d = getdcl(s, k[i]);
if (d)
d->decl.type = tyfix(st, d, d->decl.type);
}
free(k);
}
static void checkrange(Inferstate *st, Node *n)
{
Type *t;
int64_t sval;
uint64_t uval;
static const int64_t svranges[][2] = {
/* signed ints */
[Tyint8] = {-128LL, 127LL},
[Tyint16] = {-32768LL, 32767LL},
[Tyint32] = {-2147483648LL, 2*2147483647LL}, /* FIXME: this has been doubled allow for uints... */
[Tyint] = {-2147483648LL, 2*2147483647LL},
[Tyint64] = {-9223372036854775808ULL, 9223372036854775807LL},
[Tylong] = {-9223372036854775808ULL, 9223372036854775807LL},
};
static const uint64_t uvranges[][2] = {
[Tybyte] = {0, 255ULL},
[Tyuint8] = {0, 255ULL},
[Tyuint16] = {0, 65535ULL},
[Tyuint32] = {0, 4294967295ULL},
[Tyuint64] = {0, 18446744073709551615ULL},
[Tyulong] = {0, 18446744073709551615ULL},
[Tychar] = {0, 4294967295ULL},
};
/* signed types */
t = type(st, n);
if (t->type >= Tyint8 && t->type <= Tylong) {
sval = n->lit.intval;
if (sval < svranges[t->type][0] || sval > svranges[t->type][1])
fatal(n, "Literal value %lld out of range for type \"%s\"", sval, tystr(t));
} else if ((t->type >= Tybyte && t->type <= Tyulong) || t->type == Tychar) {
uval = n->lit.intval;
if (uval < uvranges[t->type][0] || uval > uvranges[t->type][1])
fatal(n, "Literal value %llu out of range for type \"%s\"", uval, tystr(t));
}
}
/* After type inference, replace all types
* with the final computed type */
static void typesub(Inferstate *st, Node *n)
{
size_t i;
if (!n)
return;
switch (n->type) {
case Nfile:
pushstab(n->file.globls);
stabsub(st, n->file.globls);
for (i = 0; i < n->file.nstmts; i++)
typesub(st, n->file.stmts[i]);
popstab();
break;
case Ndecl:
settype(st, n, tyfix(st, n, type(st, n)));
if (n->decl.init)
typesub(st, n->decl.init);
break;
case Nblock:
pushstab(n->block.scope);
for (i = 0; i < n->block.nstmts; i++)
typesub(st, n->block.stmts[i]);
popstab();
break;
case Nifstmt:
typesub(st, n->ifstmt.cond);
typesub(st, n->ifstmt.iftrue);
typesub(st, n->ifstmt.iffalse);
break;
case Nloopstmt:
typesub(st, n->loopstmt.cond);
typesub(st, n->loopstmt.init);
typesub(st, n->loopstmt.step);
typesub(st, n->loopstmt.body);
break;
case Niterstmt:
typesub(st, n->iterstmt.elt);
typesub(st, n->iterstmt.seq);
typesub(st, n->iterstmt.body);
break;
case Nmatchstmt:
typesub(st, n->matchstmt.val);
for (i = 0; i < n->matchstmt.nmatches; i++) {
typesub(st, n->matchstmt.matches[i]);
}
break;
case Nmatch:
typesub(st, n->match.pat);
typesub(st, n->match.block);
break;
case Nexpr:
settype(st, n, tyfix(st, n, type(st, n)));
typesub(st, n->expr.idx);
if (exprop(n) == Ocast && exprop(n->expr.args[0]) == Olit && n->expr.args[0]->expr.args[0]->lit.littype == Lint) {
settype(st, n->expr.args[0], exprtype(n));
settype(st, n->expr.args[0]->expr.args[0], exprtype(n));
}
for (i = 0; i < n->expr.nargs; i++)
typesub(st, n->expr.args[i]);
break;
case Nfunc:
pushstab(n->func.scope);
settype(st, n, tyfix(st, n, n->func.type));
for (i = 0; i < n->func.nargs; i++)
typesub(st, n->func.args[i]);
typesub(st, n->func.body);
popstab();
break;
case Nlit:
settype(st, n, tyfix(st, n, type(st, n)));
switch (n->lit.littype) {
case Lfunc:
typesub(st, n->lit.fnval); break;
case Lint:
checkrange(st, n);
default: break;
}
break;
case Nimpl:
case Nname:
case Nuse:
break;
case Nnone:
die("Nnone should not be seen as node type!");
break;
}
}
static void taghidden(Type *t)
{
size_t i;
if (t->vis != Visintern)
return;
t->vis = Vishidden;
for (i = 0; i < t->nsub; i++)
taghidden(t->sub[i]);
switch (t->type) {
case Tystruct:
for (i = 0; i < t->nmemb; i++)
taghidden(decltype(t->sdecls[i]));
break;
case Tyunion:
for (i = 0; i < t->nmemb; i++)
if (t->udecls[i]->etype)
taghidden(t->udecls[i]->etype);
break;
case Tyname:
for (i = 0; i < t->narg; i++)
taghidden(t->arg[i]);
for (i = 0; i < t->nparam; i++)
taghidden(t->param[i]);
break;
default:
break;
}
}
int isexportinit(Node *n)
{
if (n->decl.isgeneric && !n->decl.trait)
return 1;
/* we want to inline small values, which means we need to export them */
if (istyprimitive(n->decl.type))
return 1;
return 0;
}
static void nodetag(Stab *st, Node *n, int ingeneric, int hidelocal)
{
size_t i;
Node *d;
if (!n)
return;
switch (n->type) {
case Nblock:
for (i = 0; i < n->block.nstmts; i++)
nodetag(st, n->block.stmts[i], ingeneric, hidelocal);
break;
case Nifstmt:
nodetag(st, n->ifstmt.cond, ingeneric, hidelocal);
nodetag(st, n->ifstmt.iftrue, ingeneric, hidelocal);
nodetag(st, n->ifstmt.iffalse, ingeneric, hidelocal);
break;
case Nloopstmt:
nodetag(st, n->loopstmt.init, ingeneric, hidelocal);
nodetag(st, n->loopstmt.cond, ingeneric, hidelocal);
nodetag(st, n->loopstmt.step, ingeneric, hidelocal);
nodetag(st, n->loopstmt.body, ingeneric, hidelocal);
break;
case Niterstmt:
nodetag(st, n->iterstmt.elt, ingeneric, hidelocal);
nodetag(st, n->iterstmt.seq, ingeneric, hidelocal);
nodetag(st, n->iterstmt.body, ingeneric, hidelocal);
break;
case Nmatchstmt:
nodetag(st, n->matchstmt.val, ingeneric, hidelocal);
for (i = 0; i < n->matchstmt.nmatches; i++)
nodetag(st, n->matchstmt.matches[i], ingeneric, hidelocal);
break;
case Nmatch:
nodetag(st, n->match.pat, ingeneric, hidelocal);
nodetag(st, n->match.block, ingeneric, hidelocal);
break;
case Nexpr:
nodetag(st, n->expr.idx, ingeneric, hidelocal);
taghidden(n->expr.type);
for (i = 0; i < n->expr.nargs; i++)
nodetag(st, n->expr.args[i], ingeneric, hidelocal);
/* generics need to have the decls they refer to exported. */
if (ingeneric && exprop(n) == Ovar) {
d = decls[n->expr.did];
if (d->decl.isglobl && d->decl.vis == Visintern) {
d->decl.vis = Vishidden;
nodetag(st, d, ingeneric, hidelocal);
}
}
break;
case Nlit:
taghidden(n->lit.type);
if (n->lit.littype == Lfunc)
nodetag(st, n->lit.fnval, ingeneric, hidelocal);
break;
case Ndecl:
taghidden(n->decl.type);
if (hidelocal && n->decl.ispkglocal)
n->decl.vis = Vishidden;
n->decl.isexportinit = isexportinit(n);
if (n->decl.isexportinit)
nodetag(st, n->decl.init, n->decl.isgeneric, hidelocal);
break;
case Nfunc:
taghidden(n->func.type);
for (i = 0; i < n->func.nargs; i++)
nodetag(st, n->func.args[i], ingeneric, hidelocal);
nodetag(st, n->func.body, ingeneric, hidelocal);
break;
case Nimpl:
for (i = 0; i < n->impl.ndecls; i++) {
n->impl.decls[i]->decl.vis = Vishidden;
nodetag(st, n->impl.decls[i], 0, hidelocal);
}
break;
case Nuse: case Nname:
break;
case Nfile: case Nnone:
die("Invalid node for type export\n");
break;
}
}
void tagexports(Stab *st, int hidelocal)
{
void **k;
Node *s;
Type *t;
size_t i, j, n;
k = htkeys(st->dcl, &n);
for (i = 0; i < n; i++) {
s = getdcl(st, k[i]);
if (s->decl.vis != Visexport)
continue;
nodetag(st, s, 0, hidelocal);
}
free(k);
for (i = 0; i < nexportimpls; i++) {
nodetag(st, exportimpls[i], 0, hidelocal);
}
/* get the explicitly exported symbols */
k = htkeys(st->ty, &n);
for (i = 0; i < n; i++) {
t = gettype(st, k[i]);
if (t->vis != Visexport)
continue;
if (hidelocal && t->ispkglocal)
t->vis = Vishidden;
taghidden(t);
for (j = 0; j < t->nsub; j++)
taghidden(t->sub[j]);
for (j = 0; j < t->narg; j++)
taghidden(t->arg[j]);
for (j = 0; j < t->nparam; j++)
taghidden(t->param[j]);
}
free(k);
}
/* Take generics and build new versions of them
* with the type parameters replaced with the
* specialized types */
static void specialize(Inferstate *st, Node *f)
{
Node *d, *name;
size_t i;
for (i = 0; i < st->nspecializations; i++) {
pushstab(st->specializationscope[i]);
d = specializedcl(st->genericdecls[i], st->specializations[i]->expr.type, &name);
st->specializations[i]->expr.args[0] = name;
st->specializations[i]->expr.did = d->decl.did;
/* we need to sub in default types in the specialization, so call
* typesub on the specialized function */
typesub(st, d);
popstab();
}
}
void applytraits(Inferstate *st, Node *f)
{
size_t i;
Node *n;
Trait *trait;
Type *ty;
pushstab(f->file.globls);
/* for now, traits can only be declared globally */
for (i = 0; i < f->file.nstmts; i++) {
if (f->file.stmts[i]->type == Nimpl) {
n = f->file.stmts[i];
trait = gettrait(f->file.globls, n->impl.traitname);
if (!trait)
fatal(n, "trait %s does not exist near %s", namestr(n->impl.traitname), ctxstr(st, n));
ty = tf(st, n->impl.type);
settrait(ty, trait);
}
}
popstab();
}
void infer(Node *file)
{
Inferstate st = {0,};
assert(file->type == Nfile);
st.delayed = mkht(tyhash, tyeq);
/* set up the symtabs */
loaduses(file);
//mergeexports(&st, file);
/* do the inference */
applytraits(&st, file);
infernode(&st, file, NULL, NULL);
postcheck(&st, file);
/* and replace type vars with actual types */
typesub(&st, file);
specialize(&st, file);
}