ref: 3450935eec9aa87ac23f8b6524a2c9a873105041
dir: /lib/math/sum-impl.myr/
use std use "util" /* For references, see [Mul+10] section 6.3 */ pkg math = pkglocal const kahan_sum32 : (l : flt32[:] -> flt32) pkglocal const kahan_sum64 : (l : flt64[:] -> flt64) pkglocal const priest_sum32 : (l : flt32[:] -> flt32) pkglocal const priest_sum64 : (l : flt64[:] -> flt64) /* Backend for priest_sum; currently not useful enough to expose */ pkglocal generic double_compensated_sum : (l : @f[:] -> (@f, @f)) :: numeric,floating @f ;; type doomed_flt32_arr = flt32[:] type doomed_flt64_arr = flt64[:] impl disposable doomed_flt32_arr = __dispose__ = {a : doomed_flt32_arr; std.slfree((a : flt32[:])) } ;; impl disposable doomed_flt64_arr = __dispose__ = {a : doomed_flt64_arr; std.slfree((a : flt64[:])) } ;; /* Kahan's compensated summation. Fast and reasonably accurate, although cancellation can cause relative error blowup. For something slower, but more accurate, use something like Priest's doubly compensated sums. */ pkglocal const kahan_sum32 = {l; -> kahan_sum_gen(l)} pkglocal const kahan_sum64 = {l; -> kahan_sum_gen(l)} generic kahan_sum_gen = {l : @f[:] :: numeric,floating @f if l.len == 0 -> (0.0 : @f) ;; var s = (0.0 : @f) var c = (0.0 : @f) var y = (0.0 : @f) var t = (0.0 : @f) for x : l y = x - c t = s + y c = (t - s) - y s = t ;; -> s } /* Priest's doubly compensated summation. Extremely accurate, but relatively slow. For situations in which cancellation is not expected, something like Kahan's compensated summation may be more useful. */ pkglocal const priest_sum32 = {l : flt32[:] var l2 = std.sldup(l) std.sort(l2, mag_cmp32) auto (l2 : doomed_flt32_arr) var s, c (s, c) = double_compensated_sum(l2) -> s } pkglocal const priest_sum64 = {l : flt64[:] var l2 = std.sldup(l) std.sort(l, mag_cmp64) auto (l2 : doomed_flt64_arr) var s, c (s, c) = double_compensated_sum(l2) -> s } generic double_compensated_sum = {l : @f[:] :: numeric,floating @f /* l should be sorted in descending order */ if l.len == 0 -> ((0.0 : @f), (0.0 : @f)) ;; var s = (0.0 : @f) var c = (0.0 : @f) for x : l var y = c + x var u = x - (y - c) var t = (y + s) var v = (y - (t - s)) var z = u + v s = t + z c = z - (s - t) ;; -> (s, c) }