ref: c9c6843f7d74f3c448f623e58b5364cf73bd0eb9
dir: /zelda_rtl.c/
#include "zelda_rtl.h"
#include "variables.h"
#include "misc.h"
#include "nmi.h"
#include "poly.h"
#include "attract.h"
#include "snes/ppu.h"
#include "snes/snes_regs.h"
#include "snes/dma.h"
#include "spc_player.h"
#include "util.h"
#include "audio.h"
ZeldaEnv g_zenv;
uint8 g_ram[131072];
uint32 g_wanted_zelda_features;
static void Startup_InitializeMemory();
typedef struct SimpleHdma {
const uint8 *table;
const uint8 *indir_ptr;
uint8 rep_count;
uint8 mode;
uint8 ppu_addr;
uint8 indir_bank;
} SimpleHdma;
static void SimpleHdma_Init(SimpleHdma *c, DmaChannel *dc);
static void SimpleHdma_DoLine(SimpleHdma *c);
static const uint8 bAdrOffsets[8][4] = {
{0, 0, 0, 0},
{0, 1, 0, 1},
{0, 0, 0, 0},
{0, 0, 1, 1},
{0, 1, 2, 3},
{0, 1, 0, 1},
{0, 0, 0, 0},
{0, 0, 1, 1}
};
static const uint8 transferLength[8] = {
1, 2, 2, 4, 4, 4, 2, 4
};
const uint16 kUpperBitmasks[] = { 0x8000, 0x4000, 0x2000, 0x1000, 0x800, 0x400, 0x200, 0x100, 0x80, 0x40, 0x20, 0x10, 8, 4, 2, 1 };
const uint8 kLitTorchesColorPlus[] = {31, 8, 4, 0};
const uint8 kDungeonCrystalPendantBit[13] = {0, 0, 4, 2, 0, 16, 2, 1, 64, 4, 1, 32, 8};
const int8 kGetBestActionToPerformOnTile_x[4] = { 7, 7, -3, 16 };
const int8 kGetBestActionToPerformOnTile_y[4] = { 6, 24, 12, 12 };
#define AT_WORD(x) (uint8)(x), (x)>>8
// direct
static const uint8 kAttractDmaTable0[13] = {0x20, AT_WORD(0x00ff), 0x50, AT_WORD(0xe018), 0x50, AT_WORD(0xe018), 1, AT_WORD(0x00ff), 0};
static const uint8 kAttractDmaTable1[10] = {0x48, AT_WORD(0x00ff), 0x30, AT_WORD(0xd830), 1, AT_WORD(0x00ff), 0};
static const uint8 kHdmaTableForEnding[19] = {
0x52, AT_WORD(0x600), 8, AT_WORD(0xe2), 8, AT_WORD(0x602), 5, AT_WORD(0x604), 0x10, AT_WORD(0x606), 0x81, AT_WORD(0xe2), 0,
};
static const uint8 kSpotlightIndirectHdma[7] = {0xf8, AT_WORD(0x1b00), 0xf8, AT_WORD(0x1bf0), 0};
static const uint8 kMapModeHdma0[7] = {0xf0, AT_WORD(0xdd27), 0xf0, AT_WORD(0xde07), 0};
static const uint8 kMapModeHdma1[7] = {0xf0, AT_WORD(0xdee7), 0xf0, AT_WORD(0xdfc7), 0};
static const uint8 kAttractIndirectHdmaTab[7] = {0xf0, AT_WORD(0x1b00), 0xf0, AT_WORD(0x1be0), 0};
static const uint8 kHdmaTableForPrayingScene[7] = {0xf8, AT_WORD(0x1b00), 0xf8, AT_WORD(0x1bf0), 0};
void zelda_ppu_write(uint32_t adr, uint8_t val) {
assert(adr >= INIDISP && adr <= STAT78);
ppu_write(g_zenv.ppu, (uint8)adr, val);
}
void zelda_ppu_write_word(uint32_t adr, uint16_t val) {
zelda_ppu_write(adr, val);
zelda_ppu_write(adr + 1, val >> 8);
}
static const uint8 *SimpleHdma_GetPtr(uint32 p) {
switch (p) {
case 0xCFA87: return kAttractDmaTable0;
case 0xCFA94: return kAttractDmaTable1;
case 0xebd53: return kHdmaTableForEnding;
case 0x0F2FB: return kSpotlightIndirectHdma;
case 0xabdcf: return kMapModeHdma0; // mode7
case 0xabdd6: return kMapModeHdma1; // mode7
case 0xABDDD: return kAttractIndirectHdmaTab; // mode7
case 0x2c80c: return kHdmaTableForPrayingScene;
case 0x1b00: return (uint8 *)hdma_table_dynamic;
case 0x1be0: return (uint8 *)hdma_table_dynamic + 0xe0;
case 0x1bf0: return (uint8 *)hdma_table_dynamic + 0xf0;
case 0xadd27: return (uint8*)kMapMode_Zooms1;
case 0xade07: return (uint8*)kMapMode_Zooms1 + 0xe0;
case 0xadee7: return (uint8*)kMapMode_Zooms2;
case 0xadfc7: return (uint8*)kMapMode_Zooms2 + 0xe0;
case 0x600: return &g_ram[0x600];
case 0x602: return &g_ram[0x602];
case 0x604: return &g_ram[0x604];
case 0x606: return &g_ram[0x606];
case 0xe2: return &g_ram[0xe2];
default:
assert(0);
return NULL;
}
}
static void SimpleHdma_Init(SimpleHdma *c, DmaChannel *dc) {
if (!dc->hdmaActive) {
c->table = 0;
return;
}
c->table = SimpleHdma_GetPtr(dc->aAdr | dc->aBank << 16);
c->rep_count = 0;
c->mode = dc->mode | dc->indirect << 6;
c->ppu_addr = dc->bAdr;
c->indir_bank = dc->indBank;
}
static void SimpleHdma_DoLine(SimpleHdma *c) {
if (c->table == NULL)
return;
bool do_transfer = false;
if ((c->rep_count & 0x7f) == 0) {
c->rep_count = *c->table++;
if (c->rep_count == 0) {
c->table = NULL;
return;
}
if(c->mode & 0x40) {
c->indir_ptr = SimpleHdma_GetPtr(c->indir_bank << 16 | c->table[0] | c->table[1] * 256);
c->table += 2;
}
do_transfer = true;
}
if(do_transfer || c->rep_count & 0x80) {
for(int j = 0, j_end = transferLength[c->mode & 7]; j < j_end; j++) {
uint8 v = c->mode & 0x40 ? *c->indir_ptr++ : *c->table++;
zelda_ppu_write(0x2100 + c->ppu_addr + bAdrOffsets[c->mode & 7][j], v);
}
}
c->rep_count--;
}
static void ConfigurePpuSideSpace() {
// Let PPU impl know about the maximum allowed extra space on the sides and bottom
int extra_right = 0, extra_left = 0, extra_bottom = 0;
// printf("main %d, sub %d (%d, %d, %d)\n", main_module_index, submodule_index, BG2HOFS_copy2, room_bounds_x.v[2 | (quadrant_fullsize_x >> 1)], quadrant_fullsize_x >> 1);
int mod = main_module_index;
if (mod == 14)
mod = saved_module_for_menu;
if (mod == 9) {
if (main_module_index == 14 && submodule_index == 7 && overworld_map_state >= 4) {
// World map
extra_left = kPpuExtraLeftRight, extra_right = kPpuExtraLeftRight;
extra_bottom = 16;
} else {
// outdoors
extra_left = BG2HOFS_copy2 - ow_scroll_vars0.xstart;
extra_right = ow_scroll_vars0.xend - BG2HOFS_copy2;
extra_bottom = ow_scroll_vars0.yend - BG2VOFS_copy2;
}
} else if (mod == 7) {
// indoors, except when the light cone is in use
if (!(hdr_dungeon_dark_with_lantern && TS_copy != 0)) {
int qm = quadrant_fullsize_x >> 1;
extra_left = IntMax(BG2HOFS_copy2 - room_bounds_x.v[qm], 0);
extra_right = IntMax(room_bounds_x.v[qm + 2] - BG2HOFS_copy2, 0);
}
int qy = quadrant_fullsize_y >> 1;
extra_bottom = IntMax(room_bounds_y.v[qy + 2] - BG2VOFS_copy2, 0);
} else if (mod == 20 || mod == 0 || mod == 1) {
extra_left = kPpuExtraLeftRight, extra_right = kPpuExtraLeftRight;
extra_bottom = 16;
}
PpuSetExtraSideSpace(g_zenv.ppu, extra_left, extra_right, extra_bottom);
}
void ZeldaDrawPpuFrame(uint8 *pixel_buffer, size_t pitch, uint32 render_flags) {
SimpleHdma hdma_chans[2];
PpuBeginDrawing(g_zenv.ppu, pixel_buffer, pitch, render_flags);
dma_startDma(g_zenv.dma, HDMAEN_copy, true);
SimpleHdma_Init(&hdma_chans[0], &g_zenv.dma->channel[6]);
SimpleHdma_Init(&hdma_chans[1], &g_zenv.dma->channel[7]);
// Cheat: Let the PPU impl know about the hdma perspective correction so it can avoid guessing.
if ((render_flags & kPpuRenderFlags_4x4Mode7) && g_zenv.ppu->mode == 7) {
if (hdma_chans[0].table == kMapModeHdma0)
PpuSetMode7PerspectiveCorrection(g_zenv.ppu, kMapMode_Zooms1[0], kMapMode_Zooms1[223]);
else if (hdma_chans[0].table == kMapModeHdma1)
PpuSetMode7PerspectiveCorrection(g_zenv.ppu, kMapMode_Zooms2[0], kMapMode_Zooms2[223]);
else if (hdma_chans[0].table == kAttractIndirectHdmaTab)
PpuSetMode7PerspectiveCorrection(g_zenv.ppu, hdma_table_dynamic[0], hdma_table_dynamic[223]);
else
PpuSetMode7PerspectiveCorrection(g_zenv.ppu, 0, 0);
}
if (g_zenv.ppu->extraLeftRight != 0 || render_flags & kPpuRenderFlags_Height240)
ConfigurePpuSideSpace();
int height = render_flags & kPpuRenderFlags_Height240 ? 240 : 224;
for (int i = 0; i <= height; i++) {
if (i == 128 && irq_flag) {
zelda_ppu_write(BG3HOFS, selectfile_var8);
zelda_ppu_write(BG3HOFS, selectfile_var8 >> 8);
zelda_ppu_write(BG3VOFS, 0);
zelda_ppu_write(BG3VOFS, 0);
if (irq_flag & 0x80) {
irq_flag = 0;
zelda_snes_dummy_write(NMITIMEN, 0x81);
}
}
ppu_runLine(g_zenv.ppu, i);
SimpleHdma_DoLine(&hdma_chans[0]);
SimpleHdma_DoLine(&hdma_chans[1]);
}
}
void HdmaSetup(uint32 addr6, uint32 addr7, uint8 transfer_unit, uint8 reg6, uint8 reg7, uint8 indirect_bank) {
Dma *dma = g_zenv.dma;
if (addr6) {
dma_write(dma, DMAP6, transfer_unit);
dma_write(dma, BBAD6, reg6);
dma_write(dma, A1T6L, addr6);
dma_write(dma, A1T6H, addr6 >> 8);
dma_write(dma, A1B6, addr6 >> 16);
dma_write(dma, DAS60, indirect_bank);
}
dma_write(dma, DMAP7, transfer_unit);
dma_write(dma, BBAD7, reg7);
dma_write(dma, A1T7L, addr7);
dma_write(dma, A1T7H, addr7 >> 8);
dma_write(dma, A1B7, addr7 >> 16);
dma_write(dma, DAS70, indirect_bank);
}
static void ZeldaInitializationCode() {
zelda_snes_dummy_write(NMITIMEN, 0);
zelda_snes_dummy_write(HDMAEN, 0);
zelda_snes_dummy_write(MDMAEN, 0);
Sound_LoadIntroSongBank();
Startup_InitializeMemory();
animated_tile_data_src = 0xa680;
dma_source_addr_9 = 0xb280;
dma_source_addr_14 = 0xb280 + 0x60;
zelda_snes_dummy_write(NMITIMEN, 0x81);
}
static void ClearOamBuffer() { // 80841e
for (int i = 0; i < 128; i++)
oam_buf[i].y = 0xf0;
}
static void ZeldaRunGameLoop() {
frame_counter++;
ClearOamBuffer();
Module_MainRouting();
NMI_PrepareSprites();
nmi_boolean = 0;
}
void ZeldaInitialize() {
g_zenv.dma = dma_init(NULL);
g_zenv.ppu = ppu_init(NULL);
g_zenv.ram = g_ram;
g_zenv.sram = (uint8*)calloc(8192, 1);
g_zenv.vram = g_zenv.ppu->vram;
g_zenv.player = SpcPlayer_Create();
SpcPlayer_Initialize(g_zenv.player);
dma_reset(g_zenv.dma);
ppu_reset(g_zenv.ppu);
}
static void ZeldaRunPolyLoop() {
if (intro_did_run_step && !nmi_flag_update_polyhedral) {
Poly_RunFrame();
intro_did_run_step = 0;
nmi_flag_update_polyhedral = 0xff;
}
}
void ZeldaRunFrameInternal(uint16 input, int run_what) {
if (animated_tile_data_src == 0)
ZeldaInitializationCode();
if (run_what & 2)
ZeldaRunPolyLoop();
if (run_what & 1)
ZeldaRunGameLoop();
Interrupt_NMI(input);
}
static int IncrementCrystalCountdown(uint8 *a, int v) {
int t = *a + v;
*a = t;
return t >> 8;
}
int frame_ctr_dbg;
static uint8 *g_emu_memory_ptr;
static ZeldaRunFrameFunc *g_emu_runframe;
static ZeldaSyncAllFunc *g_emu_syncall;
void ZeldaSetupEmuCallbacks(uint8 *emu_ram, ZeldaRunFrameFunc *func, ZeldaSyncAllFunc *sync_all) {
g_emu_memory_ptr = emu_ram;
g_emu_runframe = func;
g_emu_syncall = sync_all;
}
static void EmuSynchronizeWholeState() {
if (g_emu_syncall)
g_emu_syncall();
}
// |ptr| must be a pointer into g_ram, will synchronize the RAM memory with the
// emulator.
static void EmuSyncMemoryRegion(void *ptr, size_t n) {
uint8 *data = (uint8 *)ptr;
assert(data >= g_ram && data < g_ram + 0x20000);
if (g_emu_memory_ptr)
memcpy(g_emu_memory_ptr + (data - g_ram), data, n);
}
static void Startup_InitializeMemory() { // 8087c0
memset(g_ram + 0x0, 0, 0x2000);
main_palette_buffer[0] = 0;
srm_var1 = 0;
uint8 *sram = g_zenv.sram;
if (WORD(sram[0x3e5]) != 0x55aa)
WORD(sram[0x3e5]) = 0;
if (WORD(sram[0x8e5]) != 0x55aa)
WORD(sram[0x8e5]) = 0;
if (WORD(sram[0xde5]) != 0x55aa)
WORD(sram[0xde5]) = 0;
INIDISP_copy = 0x80;
flag_update_cgram_in_nmi++;
}
void ByteArray_AppendVl(ByteArray *arr, uint32 v) {
for (; v >= 255; v -= 255)
ByteArray_AppendByte(arr, 255);
ByteArray_AppendByte(arr, v);
}
void saveFunc(void *ctx_in, void *data, size_t data_size) {
ByteArray_AppendData((ByteArray *)ctx_in, data, data_size);
}
typedef struct LoadFuncState {
uint8 *p, *pend;
} LoadFuncState;
void loadFunc(void *ctx, void *data, size_t data_size) {
LoadFuncState *st = (LoadFuncState *)ctx;
assert(st->pend - st->p >= data_size);
memcpy(data, st->p, data_size);
st->p += data_size;
}
static void InternalSaveLoad(SaveLoadFunc *func, void *ctx) {
uint8 junk[58] = { 0 };
func(ctx, junk, 27);
func(ctx, g_zenv.player->ram, 0x10000); // apu ram
func(ctx, junk, 40); // junk
dsp_saveload(g_zenv.player->dsp, func, ctx); // 3024 bytes of dsp
func(ctx, junk, 15); // spc junk
dma_saveload(g_zenv.dma, func, ctx); // 192 bytes of dma state
ppu_saveload(g_zenv.ppu, func, ctx); // 66619 + 512 + 174
func(ctx, g_zenv.sram, 0x2000); // 8192 bytes of sram
func(ctx, junk, 58); // snes junk
func(ctx, g_zenv.ram, 0x20000); // 0x20000 bytes of ram
func(ctx, junk, 4); // snes junk
}
void ZeldaReset(bool preserve_sram) {
frame_ctr_dbg = 0;
dma_reset(g_zenv.dma);
ppu_reset(g_zenv.ppu);
memset(g_zenv.ram, 0, 0x20000);
if (!preserve_sram)
memset(g_zenv.sram, 0, 0x2000);
ZeldaApuLock();
ZeldaRestoreMusicAfterLoad_Locked(true);
ZeldaApuUnlock();
EmuSynchronizeWholeState();
}
static void LoadSnesState(SaveLoadFunc *func, void *ctx) {
// Do the actual loading
ZeldaApuLock();
InternalSaveLoad(func, ctx);
memcpy(g_zenv.ram + 0x1DBA0, g_zenv.ram + 0x1b00, 224 * 2); // hdma table was moved
ZeldaRestoreMusicAfterLoad_Locked(false);
ZeldaApuUnlock();
EmuSynchronizeWholeState();
}
static void SaveSnesState(SaveLoadFunc *func, void *ctx) {
memcpy(g_zenv.ram + 0x1b00, g_zenv.ram + 0x1DBA0, 224 * 2); // hdma table was moved
ZeldaApuLock();
ZeldaSaveMusicStateToRam_Locked();
InternalSaveLoad(func, ctx);
ZeldaApuUnlock();
}
typedef struct StateRecorder {
uint16 last_inputs;
uint32 frames_since_last;
uint32 total_frames;
// For replay
uint32 replay_pos, replay_pos_last_complete;
uint32 replay_frame_counter;
uint32 replay_next_cmd_at;
uint8 replay_cmd;
bool replay_mode;
ByteArray log;
ByteArray base_snapshot;
} StateRecorder;
static StateRecorder state_recorder;
void StateRecorder_Init(StateRecorder *sr) {
memset(sr, 0, sizeof(*sr));
}
void StateRecorder_RecordCmd(StateRecorder *sr, uint8 cmd) {
int frames = sr->frames_since_last;
sr->frames_since_last = 0;
int x = (cmd < 0xc0) ? 0xf : 0x1;
ByteArray_AppendByte(&sr->log, cmd | (frames < x ? frames : x));
if (frames >= x)
ByteArray_AppendVl(&sr->log, frames - x);
}
void StateRecorder_Record(StateRecorder *sr, uint16 inputs) {
uint16 diff = inputs ^ sr->last_inputs;
if (diff != 0) {
sr->last_inputs = inputs;
// printf("0x%.4x %d: ", diff, sr->frames_since_last);
// size_t lb = sr->log.size;
for (int i = 0; i < 12; i++) {
if ((diff >> i) & 1)
StateRecorder_RecordCmd(sr, i << 4);
}
// while (lb < sr->log.size)
// printf("%.2x ", sr->log.data[lb++]);
// printf("\n");
}
sr->frames_since_last++;
sr->total_frames++;
}
void StateRecorder_RecordPatchByte(StateRecorder *sr, uint32 addr, const uint8 *value, int num) {
assert(addr < 0x20000);
// printf("%d: PatchByte(0x%x, 0x%x. %d): ", sr->frames_since_last, addr, *value, num);
// size_t lb = sr->log.size;
int lq = (num - 1) <= 3 ? (num - 1) : 3;
StateRecorder_RecordCmd(sr, 0xc0 | (addr & 0x10000 ? 2 : 0) | lq << 2);
if (lq == 3)
ByteArray_AppendVl(&sr->log, num - 1 - 3);
ByteArray_AppendByte(&sr->log, addr >> 8);
ByteArray_AppendByte(&sr->log, addr);
for (int i = 0; i < num; i++)
ByteArray_AppendByte(&sr->log, value[i]);
// while (lb < sr->log.size)
// printf("%.2x ", sr->log.data[lb++]);
// printf("\n");
}
void ReadFromFile(FILE *f, void *data, size_t n) {
if (fread(data, 1, n, f) != n)
Die("fread failed\n");
}
void StateRecorder_Load(StateRecorder *sr, FILE *f, bool replay_mode) {
// todo: fix robustness on invalid data.
uint32 hdr[8] = { 0 };
ReadFromFile(f, hdr, sizeof(hdr));
assert(hdr[0] == 1);
sr->total_frames = hdr[1];
ByteArray_Resize(&sr->log, hdr[2]);
ReadFromFile(f, sr->log.data, sr->log.size);
sr->last_inputs = hdr[3];
sr->frames_since_last = hdr[4];
ByteArray_Resize(&sr->base_snapshot, (hdr[5] & 1) ? hdr[6] : 0);
ReadFromFile(f, sr->base_snapshot.data, sr->base_snapshot.size);
sr->replay_next_cmd_at = 0;
sr->replay_mode = replay_mode;
if (replay_mode) {
sr->frames_since_last = 0;
sr->last_inputs = 0;
sr->replay_pos = sr->replay_pos_last_complete = 0;
sr->replay_frame_counter = 0;
// Load snapshot from |base_snapshot_|, or reset if empty.
if (sr->base_snapshot.size) {
LoadFuncState state = { sr->base_snapshot.data, sr->base_snapshot.data + sr->base_snapshot.size };
LoadSnesState(&loadFunc, &state);
assert(state.p == state.pend);
} else {
ZeldaReset(false);
}
} else {
// Resume replay from the saved position?
sr->replay_pos = sr->replay_pos_last_complete = hdr[5] >> 1;
sr->replay_frame_counter = hdr[7];
sr->replay_mode = (sr->replay_frame_counter != 0);
ByteArray arr = { 0 };
ByteArray_Resize(&arr, hdr[6]);
ReadFromFile(f, arr.data, arr.size);
LoadFuncState state = { arr.data, arr.data + arr.size };
LoadSnesState(&loadFunc, &state);
ByteArray_Destroy(&arr);
assert(state.p == state.pend);
}
}
void StateRecorder_Save(StateRecorder *sr, FILE *f) {
uint32 hdr[8] = { 0 };
ByteArray arr = { 0 };
SaveSnesState(&saveFunc, &arr);
assert(sr->base_snapshot.size == 0 || sr->base_snapshot.size == arr.size);
hdr[0] = 1;
hdr[1] = sr->total_frames;
hdr[2] = (uint32)sr->log.size;
hdr[3] = sr->last_inputs;
hdr[4] = sr->frames_since_last;
hdr[5] = sr->base_snapshot.size ? 1 : 0;
hdr[6] = (uint32)arr.size;
// If saving while in replay mode, also need to persist
// sr->replay_pos_last_complete and sr->replay_frame_counter
// so the replaying can be resumed.
if (sr->replay_mode) {
hdr[5] |= sr->replay_pos_last_complete << 1;
hdr[7] = sr->replay_frame_counter;
}
fwrite(hdr, 1, sizeof(hdr), f);
fwrite(sr->log.data, 1, hdr[2], f);
fwrite(sr->base_snapshot.data, 1, sr->base_snapshot.size, f);
fwrite(arr.data, 1, arr.size, f);
ByteArray_Destroy(&arr);
}
void StateRecorder_ClearKeyLog(StateRecorder *sr) {
printf("Clearing key log!\n");
sr->base_snapshot.size = 0;
SaveSnesState(&saveFunc, &sr->base_snapshot);
ByteArray old_log = sr->log;
int old_frames_since_last = sr->frames_since_last;
memset(&sr->log, 0, sizeof(sr->log));
// If there are currently any active inputs, record them initially at timestamp 0.
sr->frames_since_last = 0;
if (sr->last_inputs) {
for (int i = 0; i < 12; i++) {
if ((sr->last_inputs >> i) & 1)
StateRecorder_RecordCmd(sr, i << 4);
}
}
if (sr->replay_mode) {
// When clearing the key log while in replay mode, we want to keep
// replaying but discarding all key history up until this point.
if (sr->replay_next_cmd_at != 0xffffffff) {
sr->replay_next_cmd_at -= old_frames_since_last;
sr->frames_since_last = sr->replay_next_cmd_at;
sr->replay_pos_last_complete = (uint32)sr->log.size;
StateRecorder_RecordCmd(sr, sr->replay_cmd);
int old_replay_pos = sr->replay_pos;
sr->replay_pos = (uint32)sr->log.size;
ByteArray_AppendData(&sr->log, old_log.data + old_replay_pos, old_log.size - old_replay_pos);
}
sr->total_frames -= sr->replay_frame_counter;
sr->replay_frame_counter = 0;
} else {
sr->total_frames = 0;
}
ByteArray_Destroy(&old_log);
sr->frames_since_last = 0;
}
uint16 StateRecorder_ReadNextReplayState(StateRecorder *sr) {
assert(sr->replay_mode);
while (sr->frames_since_last >= sr->replay_next_cmd_at) {
int replay_pos = sr->replay_pos;
if (replay_pos != sr->replay_pos_last_complete) {
// Apply next command
sr->frames_since_last = 0;
if (sr->replay_cmd < 0xc0) {
sr->last_inputs ^= 1 << (sr->replay_cmd >> 4);
} else if (sr->replay_cmd < 0xd0) {
int nb = 1 + ((sr->replay_cmd >> 2) & 3);
uint8 t;
if (nb == 4) do {
nb += t = sr->log.data[replay_pos++];
} while (t == 255);
uint32 addr = ((sr->replay_cmd >> 1) & 1) << 16;
addr |= sr->log.data[replay_pos++] << 8;
addr |= sr->log.data[replay_pos++];
do {
g_ram[addr & 0x1ffff] = sr->log.data[replay_pos++];
EmuSyncMemoryRegion(&g_ram[addr & 0x1ffff], 1);
} while (addr++, --nb);
} else {
assert(0);
}
}
sr->replay_pos_last_complete = replay_pos;
if (replay_pos >= sr->log.size) {
sr->replay_pos = replay_pos;
sr->replay_next_cmd_at = 0xffffffff;
break;
}
// Read the next one
uint8 cmd = sr->log.data[replay_pos++], t;
int mask = (cmd < 0xc0) ? 0xf : 0x1;
int frames = cmd & mask;
if (frames == mask) do {
frames += t = sr->log.data[replay_pos++];
} while (t == 255);
sr->replay_next_cmd_at = frames;
sr->replay_cmd = cmd;
sr->replay_pos = replay_pos;
}
sr->frames_since_last++;
// Turn off replay mode after we reached the final frame position
if (++sr->replay_frame_counter >= sr->total_frames) {
sr->replay_mode = false;
}
return sr->last_inputs;
}
void StateRecorder_StopReplay(StateRecorder *sr) {
if (!sr->replay_mode)
return;
sr->replay_mode = false;
sr->total_frames = sr->replay_frame_counter;
sr->log.size = sr->replay_pos_last_complete;
}
#ifdef _DEBUG
// This can be used to read inputs from a text file for easier debugging
int InputStateReadFromFile() {
static FILE *f;
static uint32 next_ts, next_keys, cur_keys;
char buf[64];
char keys[64];
while (state_recorder.total_frames == next_ts) {
cur_keys = next_keys;
if (!f)
f = fopen("boss_bug.txt", "r");
if (fgets(buf, sizeof(buf), f)) {
if (sscanf(buf, "%d: %s", &next_ts, keys) == 1) keys[0] = 0;
int i = 0;
for (const char *s = keys; *s; s++) {
static const char kKeys[] = "AXsSUDLRBY";
const char *t = strchr(kKeys, *s);
assert(t);
i |= 1 << (t - kKeys);
}
next_keys = i;
} else {
next_ts = 0xffffffff;
}
}
return cur_keys;
}
#endif
bool ZeldaRunFrame(int inputs) {
// Avoid up/down and left/right from being pressed at the same time
if ((inputs & 0x30) == 0x30) inputs ^= 0x30;
if ((inputs & 0xc0) == 0xc0) inputs ^= 0xc0;
frame_ctr_dbg++;
bool is_replay = state_recorder.replay_mode;
// Either copy state or apply state
if (is_replay) {
inputs = StateRecorder_ReadNextReplayState(&state_recorder);
} else {
// input_state = InputStateReadFromFile();
StateRecorder_Record(&state_recorder, inputs);
// This is whether APUI00 is true or false, this is used by the ancilla code.
uint8 apui00 = ZeldaIsMusicPlaying();
if (apui00 != g_ram[kRam_APUI00]) {
g_ram[kRam_APUI00] = apui00;
EmuSyncMemoryRegion(&g_ram[kRam_APUI00], 1);
StateRecorder_RecordPatchByte(&state_recorder, 0x648, &apui00, 1);
}
if (animated_tile_data_src != 0) {
// Whenever we're no longer replaying, we'll remember what bugs were fixed,
// but only if game is initialized.
if (g_ram[kRam_BugsFixed] < kBugFix_Latest) {
g_ram[kRam_BugsFixed] = kBugFix_Latest;
EmuSyncMemoryRegion(&g_ram[kRam_BugsFixed], 1);
StateRecorder_RecordPatchByte(&state_recorder, kRam_BugsFixed, &g_ram[kRam_BugsFixed], 1);
}
if (enhanced_features0 != g_wanted_zelda_features) {
enhanced_features0 = g_wanted_zelda_features;
EmuSyncMemoryRegion(&enhanced_features0, sizeof(enhanced_features0));
StateRecorder_RecordPatchByte(&state_recorder, kRam_Features0, (uint8 *)&enhanced_features0, 4);
}
}
}
int run_what;
if (g_ram[kRam_BugsFixed] < kBugFix_PolyRenderer) {
// A previous version of this code alternated the game loop with
// the poly renderer.
run_what = (is_nmi_thread_active && thread_other_stack != 0x1f31) ? 2 : 1;
} else {
// The snes seems to let poly rendering run for a little
// while each fram until it eventually completes a frame.
// Simulate this by rendering the poly every n:th frame.
run_what = (is_nmi_thread_active && IncrementCrystalCountdown(&g_ram[kRam_CrystalRotateCounter], virq_trigger)) ? 3 : 1;
EmuSyncMemoryRegion(&g_ram[kRam_CrystalRotateCounter], 1);
}
if (g_emu_runframe == NULL || enhanced_features0 != 0) {
// can't compare against real impl when running with extra features.
ZeldaRunFrameInternal(inputs, run_what);
} else {
g_emu_runframe(inputs, run_what);
}
ZeldaPushApuState();
return is_replay;
}
static const char *const kReferenceSaves[] = {
"Chapter 1 - Zelda's Rescue.sav",
"Chapter 2 - After Eastern Palace.sav",
"Chapter 3 - After Desert Palace.sav",
"Chapter 4 - After Tower of Hera.sav",
"Chapter 5 - After Hyrule Castle Tower.sav",
"Chapter 6 - After Dark Palace.sav",
"Chapter 7 - After Swamp Palace.sav",
"Chapter 8 - After Skull Woods.sav",
"Chapter 9 - After Gargoyle's Domain.sav",
"Chapter 10 - After Ice Palace.sav",
"Chapter 11 - After Misery Mire.sav",
"Chapter 12 - After Turtle Rock.sav",
"Chapter 13 - After Ganon's Tower.sav",
};
void SaveLoadSlot(int cmd, int which) {
char name[128];
if (which & 256) {
if (cmd == kSaveLoad_Save)
return;
sprintf(name, "saves/ref/%s", kReferenceSaves[which - 256]);
} else {
sprintf(name, "saves/save%d.sav", which);
}
FILE *f = fopen(name, cmd != kSaveLoad_Save ? "rb" : "wb");
if (f) {
printf("*** %s slot %d\n",
cmd == kSaveLoad_Save ? "Saving" : cmd == kSaveLoad_Load ? "Loading" : "Replaying", which);
if (cmd != kSaveLoad_Save)
StateRecorder_Load(&state_recorder, f, cmd == kSaveLoad_Replay);
else
StateRecorder_Save(&state_recorder, f);
fclose(f);
}
}
typedef struct StateRecoderMultiPatch {
uint32 count;
uint32 addr;
uint8 vals[256];
} StateRecoderMultiPatch;
void StateRecoderMultiPatch_Init(StateRecoderMultiPatch *mp) {
mp->count = mp->addr = 0;
}
void StateRecoderMultiPatch_Commit(StateRecoderMultiPatch *mp) {
if (mp->count)
StateRecorder_RecordPatchByte(&state_recorder, mp->addr, mp->vals, mp->count);
}
void StateRecoderMultiPatch_Patch(StateRecoderMultiPatch *mp, uint32 addr, uint8 value) {
if (mp->count >= 256 || addr != mp->addr + mp->count) {
StateRecoderMultiPatch_Commit(mp);
mp->addr = addr;
mp->count = 0;
}
mp->vals[mp->count++] = value;
g_ram[addr] = value;
EmuSyncMemoryRegion(&g_ram[addr], 1);
}
void PatchCommand(char c) {
StateRecoderMultiPatch mp;
StateRecoderMultiPatch_Init(&mp);
if (c == 'w') {
StateRecoderMultiPatch_Patch(&mp, 0xf372, 80); // health filler
StateRecoderMultiPatch_Patch(&mp, 0xf373, 80); // magic filler
// b.Patch(0x1FE01, 25);
} else if (c == 'W') {
StateRecoderMultiPatch_Patch(&mp, 0xf375, 10); // link_bomb_filler
StateRecoderMultiPatch_Patch(&mp, 0xf376, 10); // link_arrow_filler
uint16 rupees = link_rupees_goal + 100;
StateRecoderMultiPatch_Patch(&mp, 0xf360, rupees); // link_rupees_goal
StateRecoderMultiPatch_Patch(&mp, 0xf361, rupees >> 8); // link_rupees_goal
} else if (c == 'k') {
StateRecorder_ClearKeyLog(&state_recorder);
} else if (c == 'o') {
StateRecoderMultiPatch_Patch(&mp, 0xf36f, 1);
} else if (c == 'l') {
StateRecorder_StopReplay(&state_recorder);
} else if (c == 'E') {
StateRecoderMultiPatch_Patch(&mp, 0x37f, g_ram[0x37f] ^ 1);
}
StateRecoderMultiPatch_Commit(&mp);
}
void ZeldaReadSram() {
FILE *f = fopen("saves/sram.dat", "rb");
if (f) {
if (fread(g_zenv.sram, 1, 8192, f) != 8192)
fprintf(stderr, "Error reading saves/sram.dat\n");
fclose(f);
EmuSynchronizeWholeState();
}
}
void ZeldaWriteSram() {
rename("saves/sram.dat", "saves/sram.bak");
FILE *f = fopen("saves/sram.dat", "wb");
if (f) {
fwrite(g_zenv.sram, 1, 8192, f);
fclose(f);
} else {
fprintf(stderr, "Unable to write saves/sram.dat\n");
}
}