ref: 02c64fd2b32c350c156e74a15656e4951165b872
dir: /include-demo/3dMath.h/
/* Public Domain / CC0 C99 Vector Math Library */ #ifndef CHAD_MATH_H #define CHAD_MATH_H //#define CHAD_MATH_NO_ALIGN #ifndef CHAD_MATH_NO_ALIGN #include <stdalign.h> #define CHAD_ALIGN alignas(16) #else #define CHAD_ALIGN /*a comment*/ #endif #include <math.h> #include <string.h> typedef float f_; typedef unsigned int uint; #define MAX(x,y) (x>y?x:y) #define MIN(x,y) (x<y?x:y) typedef struct {CHAD_ALIGN f_ d[3];} vec3; typedef struct {CHAD_ALIGN int d[3];} ivec3; typedef struct {CHAD_ALIGN f_ d[4];} vec4; typedef struct {CHAD_ALIGN f_ d[16];} mat4; //Collision detection //These Algorithms return the penetration vector into //the shape in the first argument //With depth of penetration in element 4 //if depth of penetration is zero or lower then there is no penetration. typedef struct{ vec4 c; vec3 e; }aabb; typedef aabb colshape; //c.d[3] determines if it's a sphere or box. 0 or less = box, greater than 0 = sphere static inline mat4 scalemat4( vec4 s){ mat4 ret; for(int i = 1; i < 16; i++) ret.d[i]= 0.0; ret.d[0*4 + 0] = s.d[0]; //x scale ret.d[1*4 + 1] = s.d[1]; //y scale ret.d[2*4 + 2] = s.d[2]; //z scale ret.d[3*4 + 3] = s.d[3]; //w scale return ret; } static inline int invmat4( mat4 m, mat4* invOut) //returns 1 if successful { mat4 inv; f_ det; int i; inv.d[0] = m.d[5] * m.d[10] * m.d[15] - m.d[5] * m.d[11] * m.d[14] - m.d[9] * m.d[6] * m.d[15] + m.d[9] * m.d[7] * m.d[14] + m.d[13] * m.d[6] * m.d[11] - m.d[13] * m.d[7] * m.d[10]; inv.d[4] = -m.d[4] * m.d[10] * m.d[15] + m.d[4] * m.d[11] * m.d[14] + m.d[8] * m.d[6] * m.d[15] - m.d[8] * m.d[7] * m.d[14] - m.d[12] * m.d[6] * m.d[11] + m.d[12] * m.d[7] * m.d[10]; inv.d[8] = m.d[4] * m.d[9] * m.d[15] - m.d[4] * m.d[11] * m.d[13] - m.d[8] * m.d[5] * m.d[15] + m.d[8] * m.d[7] * m.d[13] + m.d[12] * m.d[5] * m.d[11] - m.d[12] * m.d[7] * m.d[9]; inv.d[12] = -m.d[4] * m.d[9] * m.d[14] + m.d[4] * m.d[10] * m.d[13] + m.d[8] * m.d[5] * m.d[14] - m.d[8] * m.d[6] * m.d[13] - m.d[12] * m.d[5] * m.d[10] + m.d[12] * m.d[6] * m.d[9]; inv.d[1] = -m.d[1] * m.d[10] * m.d[15] + m.d[1] * m.d[11] * m.d[14] + m.d[9] * m.d[2] * m.d[15] - m.d[9] * m.d[3] * m.d[14] - m.d[13] * m.d[2] * m.d[11] + m.d[13] * m.d[3] * m.d[10]; inv.d[5] = m.d[0] * m.d[10] * m.d[15] - m.d[0] * m.d[11] * m.d[14] - m.d[8] * m.d[2] * m.d[15] + m.d[8] * m.d[3] * m.d[14] + m.d[12] * m.d[2] * m.d[11] - m.d[12] * m.d[3] * m.d[10]; inv.d[9] = -m.d[0] * m.d[9] * m.d[15] + m.d[0] * m.d[11] * m.d[13] + m.d[8] * m.d[1] * m.d[15] - m.d[8] * m.d[3] * m.d[13] - m.d[12] * m.d[1] * m.d[11] + m.d[12] * m.d[3] * m.d[9]; inv.d[13] = m.d[0] * m.d[9] * m.d[14] - m.d[0] * m.d[10] * m.d[13] - m.d[8] * m.d[1] * m.d[14] + m.d[8] * m.d[2] * m.d[13] + m.d[12] * m.d[1] * m.d[10] - m.d[12] * m.d[2] * m.d[9]; inv.d[2] = m.d[1] * m.d[6] * m.d[15] - m.d[1] * m.d[7] * m.d[14] - m.d[5] * m.d[2] * m.d[15] + m.d[5] * m.d[3] * m.d[14] + m.d[13] * m.d[2] * m.d[7] - m.d[13] * m.d[3] * m.d[6]; inv.d[6] = -m.d[0] * m.d[6] * m.d[15] + m.d[0] * m.d[7] * m.d[14] + m.d[4] * m.d[2] * m.d[15] - m.d[4] * m.d[3] * m.d[14] - m.d[12] * m.d[2] * m.d[7] + m.d[12] * m.d[3] * m.d[6]; inv.d[10] = m.d[0] * m.d[5] * m.d[15] - m.d[0] * m.d[7] * m.d[13] - m.d[4] * m.d[1] * m.d[15] + m.d[4] * m.d[3] * m.d[13] + m.d[12] * m.d[1] * m.d[7] - m.d[12] * m.d[3] * m.d[5]; inv.d[14] = -m.d[0] * m.d[5] * m.d[14] + m.d[0] * m.d[6] * m.d[13] + m.d[4] * m.d[1] * m.d[14] - m.d[4] * m.d[2] * m.d[13] - m.d[12] * m.d[1] * m.d[6] + m.d[12] * m.d[2] * m.d[5]; inv.d[3] = -m.d[1] * m.d[6] * m.d[11] + m.d[1] * m.d[7] * m.d[10] + m.d[5] * m.d[2] * m.d[11] - m.d[5] * m.d[3] * m.d[10] - m.d[9] * m.d[2] * m.d[7] + m.d[9] * m.d[3] * m.d[6]; inv.d[7] = m.d[0] * m.d[6] * m.d[11] - m.d[0] * m.d[7] * m.d[10] - m.d[4] * m.d[2] * m.d[11] + m.d[4] * m.d[3] * m.d[10] + m.d[8] * m.d[2] * m.d[7] - m.d[8] * m.d[3] * m.d[6]; inv.d[11] = -m.d[0] * m.d[5] * m.d[11] + m.d[0] * m.d[7] * m.d[9] + m.d[4] * m.d[1] * m.d[11] - m.d[4] * m.d[3] * m.d[9] - m.d[8] * m.d[1] * m.d[7] + m.d[8] * m.d[3] * m.d[5]; inv.d[15] = m.d[0] * m.d[5] * m.d[10] - m.d[0] * m.d[6] * m.d[9] - m.d[4] * m.d[1] * m.d[10] + m.d[4] * m.d[2] * m.d[9] + m.d[8] * m.d[1] * m.d[6] - m.d[8] * m.d[2] * m.d[5]; det = m.d[0] * inv.d[0] + m.d[1] * inv.d[4] + m.d[2] * inv.d[8] + m.d[3] * inv.d[12]; if (det == 0) return 0; det = 1.0 / det; for (i = 0; i < 16; i++) invOut->d[i] = inv.d[i] * det; return 1; } static inline mat4 perspective( f_ fov, f_ aspect, f_ near, f_ far){ mat4 ret; f_ D2R = 3.14159265358979323 / 180.0; f_ yScale = 1.0/tanf(D2R * fov/2); f_ xScale = yScale/aspect; f_ nearmfar = near-far; ret.d[0*4+0] = xScale; ret.d[0*4+1]=0; ret.d[0*4+2]=0; ret.d[0*4+3]=0; ret.d[1*4+0]=0; ret.d[1*4+1]=yScale;ret.d[1*4+2]=0; ret.d[1*4+3]=0; ret.d[2*4+0]=0; ret.d[2*4+1]=0; ret.d[2*4+2]=(far+near)/nearmfar;ret.d[2*4+3]=-1; ret.d[3*4+0]=0; ret.d[3*4+1]=0; ret.d[3*4+2]=2*far*near/nearmfar;ret.d[3*4+3]=0; /* ret.d[0*4+0] = xScale; ret.d[0*4+1]=0; ret.d[0*4+2]=0; ret.d[0*4+3]=0; ret.d[1*4+0]=0; ret.d[1*4+1]=yScale;ret.d[1*4+2]=0; ret.d[1*4+3]=0; ret.d[2*4+0]=0; ret.d[2*4+1]=0; ret.d[2*4+2]=(far+near)/nearmfar; ret.d[2*4+3]=2*far*near/nearmfar; ret.d[3*4+0]=0; ret.d[3*4+1]=0; ret.d[3*4+2]=-1; ret.d[3*4+3]=0; */ return ret; } static inline vec3 viewport( uint xdim, uint ydim, vec3 input){ input.d[0] += 1; input.d[1] += 1; input.d[0] *= (f_)xdim / 2.0; input.d[1] *= (f_)ydim / 2.0; input.d[2] = (input.d[2])/2.0; return input; } static inline mat4 rotate( vec3 rotation){ f_ a = rotation.d[0]; f_ b = rotation.d[1]; f_ c = rotation.d[2]; mat4 rm; rm.d[0*4 + 0] = cosf(a)*cosf(b); rm.d[1*4 + 0] = sinf(a)*cosf(b); rm.d[2*4 + 0] = -sinf(b); rm.d[0*4 + 1] = cosf(a)*sinf(b)*sinf(c)-sinf(a)*cosf(c); rm.d[1*4 + 1] = sinf(a)*sinf(b)*sinf(c)+cosf(a)*cosf(c); rm.d[2*4 + 1] = cosf(b)*sinf(c); rm.d[0*4 + 2] = cosf(a)*sinf(b)*cosf(c)+sinf(a)*sinf(c); rm.d[1*4 + 2] = sinf(a)*sinf(b)*cosf(c)-cosf(a)*sinf(c); rm.d[2*4 + 2] = cosf(b)*cosf(c); //the other parts rm.d[0*4 + 3] = 0; rm.d[1*4 + 3] = 0; rm.d[2*4 + 3] = 0; rm.d[3*4 + 3] = 1; //the bottom right corner of the matrix. rm.d[3*4 + 0] = 0; rm.d[3*4 + 1] = 0; rm.d[3*4 + 2] = 0; return rm; } static inline f_ clampf( f_ a, f_ min, f_ max){ if(a<min) return min; if(a>max) return max; return a; } static inline f_ lengthv3( vec3 a){ return sqrtf(a.d[0] * a.d[0] + a.d[1] * a.d[1] + a.d[2] * a.d[2]); } static inline f_ lengthv4( vec4 a){ return sqrtf(a.d[0] * a.d[0] + a.d[1] * a.d[1] + a.d[2] * a.d[2] + a.d[3] * a.d[3]); } static inline vec3 multvec3( vec3 a, vec3 b){ return (vec3){ .d[0]=a.d[0]*b.d[0], .d[1]=a.d[1]*b.d[1], .d[2]=a.d[2]*b.d[2] }; } static inline vec4 multvec4( vec4 a, vec4 b){ return (vec4){ .d[0]=a.d[0]*b.d[0], .d[1]=a.d[1]*b.d[1], .d[2]=a.d[2]*b.d[2], .d[3]=a.d[3]*b.d[3] }; } static inline vec3 clampvec3( vec3 a, vec3 min, vec3 max){ vec3 ret; ret.d[0] = clampf(a.d[0],min.d[0],max.d[0]); ret.d[1] = clampf(a.d[1],min.d[1],max.d[1]); ret.d[2] = clampf(a.d[2],min.d[2],max.d[2]); return ret; } static inline vec4 clampvec4( vec4 a, vec4 min, vec4 max){ vec4 ret; ret.d[0] = clampf(a.d[0],min.d[0],max.d[0]); ret.d[1] = clampf(a.d[1],min.d[1],max.d[1]); ret.d[2] = clampf(a.d[2],min.d[2],max.d[2]); ret.d[3] = clampf(a.d[3],min.d[3],max.d[3]); return ret; } static inline f_ dotv3( vec3 a, vec3 b){ return a.d[0] * b.d[0] + a.d[1] * b.d[1] + a.d[2] * b.d[2]; } static inline f_ dotv4( vec4 a, vec4 b){ return a.d[0] * b.d[0] + a.d[1] * b.d[1] + a.d[2] * b.d[2] + a.d[3] * b.d[3]; } static inline vec4 getrow( mat4 a, uint index){ return (vec4){ .d[0]=a.d[index], .d[1]=a.d[4+index], .d[2]=a.d[8+index], .d[3]=a.d[12+index] }; } static inline mat4 swapRowColumnMajor( mat4 in){ mat4 result; vec4 t; int i = 0; t = getrow(in,i); memcpy(result.d+i*4, t.d, 4*4);i++; t = getrow(in,i); memcpy(result.d+i*4, t.d, 4*4);i++; t = getrow(in,i); memcpy(result.d+i*4, t.d, 4*4);i++; t = getrow(in,i); memcpy(result.d+i*4, t.d, 4*4); return result; } static inline vec4 getcol( mat4 a, uint index){ return (vec4){ .d[0]=a.d[index*4], .d[1]=a.d[index*4+1], .d[2]=a.d[index*4+2], .d[3]=a.d[index*4+3] }; } static inline mat4 multm4( mat4 a, mat4 b){ mat4 ret; #pragma omp simd for(int i = 0; i < 4; i++) for(int j = 0; j < 4; j++) ret.d[i*4 + j] = dotv4( //j is the ROW of the target, i is the COLUMN. getrow(a, j), //we retrieve the same ROW as our ROW INDEX. getcol(b, i) //we retrieve the same COLUMN as our COLUMN INDEX. ); return ret; } static inline vec4 mat4xvec4( mat4 t, vec4 v){ vec4 vr; //Getting a ROW of the matrix and dotting it with the COLUMN VECTOR to get // ONE ROW of the output COLUMN VECTOR- one float. vr.d[0] = t.d[0*4] * v.d[0] + t.d[1*4] * v.d[1] + t.d[2*4] * v.d[2] + t.d[3*4] * v.d[3]; //The next one. vr.d[1] = t.d[0*4+1] * v.d[0] + t.d[1*4+1] * v.d[1] + t.d[2*4+1] * v.d[2] + t.d[3*4+1] * v.d[3]; vr.d[2] = t.d[0*4+2] * v.d[0] + t.d[1*4+2] * v.d[1] + t.d[2*4+2] * v.d[2] + t.d[3*4+2] * v.d[3]; vr.d[3] = t.d[0*4+3] * v.d[0] + t.d[1*4+3] * v.d[1] + t.d[2*4+3] * v.d[2] + t.d[3*4+3] * v.d[3]; return vr; } static inline vec3 crossv3( vec3 a, vec3 b){ vec3 retval; retval.d[0] = a.d[1] * b.d[2] - a.d[2] * b.d[1]; retval.d[1] = a.d[2] * b.d[0] - a.d[0] * b.d[2]; retval.d[2] = a.d[0] * b.d[1] - a.d[1] * b.d[0]; return retval; } static inline vec3 scalev3( f_ s, vec3 i){i.d[0] *= s; i.d[1] *= s; i.d[2] *= s; return i;} static inline vec4 scalev4( f_ s, vec4 i){i.d[0] *= s; i.d[1] *= s; i.d[2] *= s;i.d[3] *= s; return i;} static inline vec3 normalizev3( vec3 a){ if(lengthv3(a)==0) return (vec3){.d[0]=0.0,.d[1]=0.0,.d[2]=1.0}; return scalev3(1.0/lengthv3(a), a); } static inline vec4 normalizev4( vec4 a){ if(lengthv4(a)==0) return (vec4){.d[0]=0.0,.d[1]=0.0,.d[2]=1.0,.d[3]=0.0}; return scalev4(1.0/lengthv4(a), a); } static inline vec3 addv3( vec3 aa, vec3 b){ vec3 a = aa; a.d[0] += b.d[0]; a.d[1] += b.d[1]; a.d[2] += b.d[2]; return a; } static inline vec3 rotatev3( vec3 in, vec3 axis, f_ ang){ vec3 t1 = scalev3(cosf(ang),in); vec3 t2 = scalev3(sinf(ang),crossv3(axis,in)); vec3 t3 = scalev3((1-cosf(ang))*dotv3(axis,in),axis); return addv3(t1,addv3(t2,t3)); } static inline vec4 addv4( vec4 aa, vec4 b){ vec4 a = aa; a.d[0] += b.d[0]; a.d[1] += b.d[1]; a.d[2] += b.d[2]; a.d[3] += b.d[3]; return a; } static inline vec3 subv3( vec3 a, vec3 b){ return addv3(a,scalev3(-1,b)); } static inline mat4 identitymat4(){ return scalemat4( (vec4){.d[0]=1.0,.d[1]=1.0,.d[2]=1.0,.d[3]=1.0} ); } static inline mat4 translate( vec3 t){ mat4 tm = identitymat4(); tm.d[3*4+0] = t.d[0]; tm.d[3*4+1] = t.d[1]; tm.d[3*4+2] = t.d[2]; return tm; } static inline vec4 subv4( vec4 a, vec4 b){ return addv4(a,scalev4(-1,b)); } static inline vec3 reflect( vec3 in, vec3 norm){ return addv3(in, //I + scalev3(-2.0*dotv3(norm, in), //-2.0 * dotv3(norm,in) * norm //N ) ); } static inline vec4 upv3( vec3 in, f_ w){ return (vec4){ .d[0]=in.d[0], .d[1]=in.d[1], .d[2]=in.d[2], .d[3]=w }; } static inline vec3 downv4( vec4 in){ return (vec3){ .d[0]=in.d[0], .d[1]=in.d[1], .d[2]=in.d[2] }; } static inline mat4 lookAt( vec3 eye, vec3 at, vec3 up){ mat4 cw = identitymat4(); vec3 zaxis = normalizev3(subv3(at,eye)); vec3 xaxis = normalizev3(crossv3(zaxis,up)); vec3 yaxis = crossv3(xaxis, zaxis); zaxis = scalev3(-1,zaxis); cw.d[0*4+0] = xaxis.d[0]; cw.d[1*4+0] = xaxis.d[1]; cw.d[2*4+0] = xaxis.d[2]; cw.d[3*4+0] = -dotv3(xaxis,eye); cw.d[0*4+1] = yaxis.d[0]; cw.d[1*4+1] = yaxis.d[1]; cw.d[2*4+1] = yaxis.d[2]; cw.d[3*4+1] = -dotv3(yaxis,eye); cw.d[0*4+2] = zaxis.d[0]; cw.d[1*4+2] = zaxis.d[1]; cw.d[2*4+2] = zaxis.d[2]; cw.d[3*4+2] = -dotv3(zaxis,eye); cw.d[0*4+3] = 0; cw.d[1*4+3] = 0; cw.d[2*4+3] = 0; cw.d[3*4+3] = 1; return cw; } //Collision detection //These Algorithms return the penetration vector into //the shape in the first argument //With depth of penetration in element 4 //if depth of penetration is zero or lower then there is no penetration. static inline vec4 spherevsphere( vec4 s1, vec4 s2){ //x,y,z,radius vec4 ret; vec3 diff = subv3( downv4(s2), downv4(s1) ); f_ lv3 = lengthv3(diff); f_ l = (s1.d[3] + s2.d[3]-lv3); if(l < 0 || lv3 == 0) { ret.d[3] = 0;return ret; } ret = upv3( scalev3( l/lv3,diff ) ,l ); return ret; } static inline int boxvboxbool (aabb b1, aabb b2){ vec3 sumextents = addv3(b1.e,b2.e); vec3 b1c = downv4(b1.c); vec3 b2c = downv4(b2.c); if( !( (fabs(b1c.d[0] - b2c.d[0]) <= sumextents.d[0]) && (fabs(b1c.d[1] - b2c.d[1]) <= sumextents.d[1]) && (fabs(b1c.d[2] - b2c.d[2]) <= sumextents.d[2]) ) ){ return 0; } return 1; } static inline vec4 boxvbox( aabb b1, aabb b2){ //Just points along the minimum separating axis, Nothing fancy. vec4 ret = (vec4){ .d[0]=0, .d[1]=0, .d[2]=0, .d[3]=0 }; vec3 sumextents = addv3(b1.e,b2.e); vec3 b1c = downv4(b1.c); vec3 b2c = downv4(b2.c); vec3 b1min = subv3(b1c,b1.e); vec3 b2min = subv3(b2c,b2.e); vec3 b1max = addv3(b1c,b1.e); vec3 b2max = addv3(b2c,b2.e); if( !( (fabs(b1c.d[0] - b2c.d[0]) <= sumextents.d[0]) && (fabs(b1c.d[1] - b2c.d[1]) <= sumextents.d[1]) && (fabs(b1c.d[2] - b2c.d[2]) <= sumextents.d[2]) ) ){ return ret; } vec3 axispen[2]; axispen[0] = subv3(b1max,b2min); axispen[1] = subv3(b1min,b2max); ret.d[3] = axispen[0].d[0]; ret.d[0] = axispen[0].d[0]; for(int i = 1; i < 6; i++){ if(fabs(axispen[i/3].d[i%3]) < fabs(ret.d[3])){ ret = (vec4){ .d[0]=0, .d[1]=0, .d[2]=0, .d[3]=(axispen[i/3].d[i%3]) }; ret.d[i%3] = ret.d[3]; ret.d[3] = fabs(ret.d[3]); } } return ret; } static inline vec3 closestpointAABB( aabb b, vec3 p){ vec3 b1min = subv3(downv4(b.c),b.e); vec3 b1max = addv3(downv4(b.c),b.e); return clampvec3(p,b1min,b1max); } static inline vec4 spherevaabb( vec4 sph, aabb box){ vec4 ret; vec3 p = closestpointAABB(box,downv4(sph)); vec3 v = subv3(p,downv4(sph)); f_ d2 = dotv3(v,v); if(d2 <= sph.d[3] * sph.d[3]){ f_ len = lengthv3(v); f_ diff = (sph.d[3] - len); if(len > 0){ f_ factor = diff/len; vec3 bruh = scalev3(factor, v); ret = upv3(bruh, diff); return ret; } else { aabb virt; virt.c = sph; virt.e.d[0] = sph.d[3]; virt.e.d[1] = sph.d[3]; virt.e.d[2] = sph.d[3]; return boxvbox(virt,box); } } else return (vec4){ .d[0]=0, .d[1]=0, .d[2]=0, .d[3]=0 }; } //end of chad math impl //END Math_Library.h~~~~~~~~~~~~~~~~~~~~ #endif