ref: 909323e92a4e694bff5908e500d8655ac1bbd932
dir: /sys/src/9/bcm64/sdhc.c/
/* * bcm2711 sd host controller * * Copyright © 2012,2019 Richard Miller <r.miller@acm.org> * * adapted from emmc.c - the two should really be merged */ #include "u.h" #include "../port/lib.h" #include "../port/error.h" #include "mem.h" #include "dat.h" #include "fns.h" #include "io.h" #include "../port/sd.h" #define EMMCREGS (VIRTIO+0x340000) enum { Extfreq = 100*Mhz, /* guess external clock frequency if */ /* not available from vcore */ Initfreq = 400000, /* initialisation frequency for MMC */ SDfreq = 25*Mhz, /* standard SD frequency */ SDfreqhs = 50*Mhz, /* high speed frequency */ DTO = 14, /* data timeout exponent (guesswork) */ GoIdle = 0, /* mmc/sdio go idle state */ MMCSelect = 7, /* mmc/sd card select command */ Setbuswidth = 6, /* mmc/sd set bus width command */ Switchfunc = 6, /* mmc/sd switch function command */ Voltageswitch = 11, /* md/sdio switch to 1.8V */ IORWdirect = 52, /* sdio read/write direct command */ IORWextended = 53, /* sdio read/write extended command */ Appcmd = 55, /* mmc/sd application command prefix */ }; enum { /* Controller registers */ SDMAaddr = 0x00>>2, Blksizecnt = 0x04>>2, Arg1 = 0x08>>2, Cmdtm = 0x0c>>2, Resp0 = 0x10>>2, Resp1 = 0x14>>2, Resp2 = 0x18>>2, Resp3 = 0x1c>>2, Data = 0x20>>2, Status = 0x24>>2, Control0 = 0x28>>2, Control1 = 0x2c>>2, Interrupt = 0x30>>2, Irptmask = 0x34>>2, Irpten = 0x38>>2, Control2 = 0x3c>>2, Capability = 0x40>>2, Forceirpt = 0x50>>2, Dmadesc = 0x58>>2, Boottimeout = 0x70>>2, Dbgsel = 0x74>>2, Exrdfifocfg = 0x80>>2, Exrdfifoen = 0x84>>2, Tunestep = 0x88>>2, Tunestepsstd = 0x8c>>2, Tunestepsddr = 0x90>>2, Spiintspt = 0xf0>>2, Slotisrver = 0xfc>>2, /* Control0 */ Busvoltage = 7<<9, V1_8 = 5<<9, V3_0 = 6<<9, V3_3 = 7<<9, Buspower = 1<<8, Dwidth8 = 1<<5, Dmaselect = 3<<3, DmaSDMA = 0<<3, DmaADMA1 = 1<<3, DmaADMA2 = 2<<3, Hispeed = 1<<2, Dwidth4 = 1<<1, Dwidth1 = 0<<1, LED = 1<<0, /* Control1 */ Srstdata = 1<<26, /* reset data circuit */ Srstcmd = 1<<25, /* reset command circuit */ Srsthc = 1<<24, /* reset complete host controller */ Datatoshift = 16, /* data timeout unit exponent */ Datatomask = 0xF0000, Clkfreq8shift = 8, /* SD clock base divider LSBs */ Clkfreq8mask = 0xFF00, Clkfreqms2shift = 6, /* SD clock base divider MSBs */ Clkfreqms2mask = 0xC0, Clkgendiv = 0<<5, /* SD clock divided */ Clkgenprog = 1<<5, /* SD clock programmable */ Clken = 1<<2, /* SD clock enable */ Clkstable = 1<<1, Clkintlen = 1<<0, /* enable internal EMMC clocks */ /* Cmdtm */ Indexshift = 24, Suspend = 1<<22, Resume = 2<<22, Abort = 3<<22, Isdata = 1<<21, Ixchken = 1<<20, Crcchken = 1<<19, Respmask = 3<<16, Respnone = 0<<16, Resp136 = 1<<16, Resp48 = 2<<16, Resp48busy = 3<<16, Multiblock = 1<<5, Host2card = 0<<4, Card2host = 1<<4, Autocmd12 = 1<<2, Autocmd23 = 2<<2, Blkcnten = 1<<1, Dmaen = 1<<0, /* Interrupt */ Admaerr = 1<<25, Acmderr = 1<<24, Denderr = 1<<22, Dcrcerr = 1<<21, Dtoerr = 1<<20, Cbaderr = 1<<19, Cenderr = 1<<18, Ccrcerr = 1<<17, Ctoerr = 1<<16, Err = 1<<15, Cardintr = 1<<8, Cardinsert = 1<<6, /* not in Broadcom datasheet */ Readrdy = 1<<5, Writerdy = 1<<4, Dmaintr = 1<<3, Datadone = 1<<1, Cmddone = 1<<0, /* Status */ Bufread = 1<<11, /* not in Broadcom datasheet */ Bufwrite = 1<<10, /* not in Broadcom datasheet */ Readtrans = 1<<9, Writetrans = 1<<8, Datactive = 1<<2, Datinhibit = 1<<1, Cmdinhibit = 1<<0, }; static int cmdinfo[64] = { [0] Ixchken, [2] Resp136, [3] Resp48 | Ixchken | Crcchken, [5] Resp48, [6] Resp48 | Ixchken | Crcchken, [7] Resp48busy | Ixchken | Crcchken, [8] Resp48 | Ixchken | Crcchken, [9] Resp136, [11] Resp48 | Ixchken | Crcchken, [12] Resp48busy | Ixchken | Crcchken, [13] Resp48 | Ixchken | Crcchken, [16] Resp48, [17] Resp48 | Isdata | Card2host | Ixchken | Crcchken, [18] Resp48 | Isdata | Card2host | Multiblock | Blkcnten | Ixchken | Crcchken, [24] Resp48 | Isdata | Host2card | Ixchken | Crcchken, [25] Resp48 | Isdata | Host2card | Multiblock | Blkcnten | Ixchken | Crcchken, [41] Resp48, [52] Resp48 | Ixchken | Crcchken, [53] Resp48 | Ixchken | Crcchken | Isdata, [55] Resp48 | Ixchken | Crcchken, }; typedef struct Adma Adma; typedef struct Ctlr Ctlr; /* * ADMA2 descriptor * See SD Host Controller Simplified Specification Version 2.00 */ struct Adma { u32int desc; u32int addr; }; enum { /* desc fields */ Valid = 1<<0, End = 1<<1, Int = 1<<2, Nop = 0<<4, Tran = 2<<4, Link = 3<<4, OLength = 16, /* maximum value for Length field */ Maxdma = ((1<<16) - 4), }; struct Ctlr { Rendez r; int fastclock; ulong extclk; int appcmd; Adma *dma; uintptr busdram; }; static Ctlr emmc; static void mmcinterrupt(Ureg*, void*); static void WR(int reg, u32int val) { u32int *r = (u32int*)EMMCREGS; if(0)print("WR %2.2ux %ux\n", reg<<2, val); coherence(); r[reg] = val; } static uint clkdiv(uint d) { uint v; assert(d < 1<<10); v = (d << Clkfreq8shift) & Clkfreq8mask; v |= ((d >> 8) << Clkfreqms2shift) & Clkfreqms2mask; return v; } static Adma* dmaalloc(void *addr, int len) { int n; uintptr a; Adma *adma, *p; a = (uintptr)addr; n = (len + Maxdma-1) / Maxdma; adma = sdmalloc(n * sizeof(Adma)); for(p = adma; len > 0; p++){ p->desc = Valid | Tran; if(n == 1) p->desc |= len<<OLength | End | Int; else p->desc |= Maxdma<<OLength; p->addr = emmc.busdram + (PADDR(a) - PHYSDRAM); a += Maxdma; len -= Maxdma; n--; } cachedwbse(adma, (char*)p - (char*)adma); return adma; } static void emmcclk(uint freq) { u32int *r; uint div; int i; r = (u32int*)EMMCREGS; div = emmc.extclk / (freq<<1); if(emmc.extclk / (div<<1) > freq) div++; WR(Control1, clkdiv(div) | DTO<<Datatoshift | Clkgendiv | Clken | Clkintlen); for(i = 0; i < 1000; i++){ delay(1); if(r[Control1] & Clkstable) break; } if(i == 1000) print("emmc: can't set clock to %ud\n", freq); } static int datadone(void*) { int i; u32int *r = (u32int*)EMMCREGS; i = r[Interrupt]; return i & (Datadone|Err); } static int emmcinit(void) { u32int *r; ulong clk; char *s; emmc.busdram = soc.busdram; if((s = getconf("*emmc2bus")) != nil) emmc.busdram = strtoull(s, nil, 16); clk = getclkrate(ClkEmmc2); if(clk == 0){ clk = Extfreq; print("emmc: assuming external clock %lud Mhz\n", clk/1000000); } emmc.extclk = clk; r = (u32int*)EMMCREGS; if(0)print("emmc control %8.8ux %8.8ux %8.8ux\n", r[Control0], r[Control1], r[Control2]); WR(Control1, Srsthc); delay(10); while(r[Control1] & Srsthc) ; WR(Control1, Srstdata); delay(10); WR(Control1, 0); return 0; } static int emmcinquiry(char *inquiry, int inqlen) { u32int *r; uint ver; r = (u32int*)EMMCREGS; ver = r[Slotisrver] >> 16; return snprint(inquiry, inqlen, "BCM SD Host Controller %2.2x Version %2.2x", ver&0xFF, ver>>8); } static void emmcenable(void) { WR(Control0, 0); delay(1); WR(Control0, V3_3 | Buspower | Dwidth1 | DmaADMA2); WR(Control1, 0); delay(1); emmcclk(Initfreq); WR(Irpten, 0); WR(Irptmask, ~(Cardintr|Dmaintr)); WR(Interrupt, ~0); intrenable(IRQmmc, mmcinterrupt, nil, BUSUNKNOWN, "sdhc"); } static int emmccmd(u32int cmd, u32int arg, u32int *resp) { u32int *r; u32int c; int i; ulong now; r = (u32int*)EMMCREGS; assert(cmd < nelem(cmdinfo) && cmdinfo[cmd] != 0); c = (cmd << Indexshift) | cmdinfo[cmd]; /* * CMD6 may be Setbuswidth or Switchfunc depending on Appcmd prefix */ if(cmd == Switchfunc && !emmc.appcmd) c |= Isdata|Card2host; if(c & Isdata) c |= Dmaen; if(cmd == IORWextended){ if(arg & (1<<31)) c |= Host2card; else c |= Card2host; if((r[Blksizecnt]&0xFFFF0000) != 0x10000) c |= Multiblock | Blkcnten; } /* * GoIdle indicates new card insertion: reset bus width & speed */ if(cmd == GoIdle){ WR(Control0, r[Control0] & ~(Dwidth4|Hispeed)); emmcclk(Initfreq); } if(r[Status] & Cmdinhibit){ print("emmccmd: need to reset Cmdinhibit intr %ux stat %ux\n", r[Interrupt], r[Status]); WR(Control1, r[Control1] | Srstcmd); while(r[Control1] & Srstcmd) ; while(r[Status] & Cmdinhibit) ; } if((r[Status] & Datinhibit) && ((c & Isdata) || (c & Respmask) == Resp48busy)){ print("emmccmd: need to reset Datinhibit intr %ux stat %ux\n", r[Interrupt], r[Status]); WR(Control1, r[Control1] | Srstdata); while(r[Control1] & Srstdata) ; while(r[Status] & Datinhibit) ; } WR(Arg1, arg); if((i = (r[Interrupt] & ~Cardintr)) != 0){ if(i != Cardinsert) print("emmc: before command, intr was %ux\n", i); WR(Interrupt, i); } WR(Cmdtm, c); now = MACHP(0)->ticks; while(((i=r[Interrupt])&(Cmddone|Err)) == 0) if(MACHP(0)->ticks - now > HZ) break; if((i&(Cmddone|Err)) != Cmddone){ if((i&~(Err|Cardintr)) != Ctoerr) print("emmc: cmd %ux arg %ux error intr %ux stat %ux\n", c, arg, i, r[Status]); WR(Interrupt, i); if(r[Status]&Cmdinhibit){ WR(Control1, r[Control1]|Srstcmd); while(r[Control1]&Srstcmd) ; } error(Eio); } WR(Interrupt, i & ~(Datadone|Readrdy|Writerdy)); switch(c & Respmask){ case Resp136: resp[0] = r[Resp0]<<8; resp[1] = r[Resp0]>>24 | r[Resp1]<<8; resp[2] = r[Resp1]>>24 | r[Resp2]<<8; resp[3] = r[Resp2]>>24 | r[Resp3]<<8; break; case Resp48: case Resp48busy: resp[0] = r[Resp0]; break; case Respnone: resp[0] = 0; break; } if((c & Respmask) == Resp48busy){ WR(Irpten, r[Irpten]|Datadone|Err); tsleep(&emmc.r, datadone, 0, 3000); i = r[Interrupt]; if((i & Datadone) == 0) print("emmcio: no Datadone after CMD%d\n", cmd); if(i & Err) print("emmcio: CMD%d error interrupt %ux\n", cmd, r[Interrupt]); WR(Interrupt, i); } /* * Once card is selected, use faster clock */ if(cmd == MMCSelect){ delay(1); emmcclk(SDfreq); delay(1); emmc.fastclock = 1; } if(cmd == Setbuswidth){ if(emmc.appcmd){ /* * If card bus width changes, change host bus width */ switch(arg){ case 0: WR(Control0, r[Control0] & ~Dwidth4); break; case 2: WR(Control0, r[Control0] | Dwidth4); break; } }else{ /* * If card switched into high speed mode, increase clock speed */ if((arg&0x8000000F) == 0x80000001){ delay(1); emmcclk(SDfreqhs); delay(1); } } }else if(cmd == IORWdirect && (arg & ~0xFF) == (1<<31|0<<28|7<<9)){ switch(arg & 0x3){ case 0: WR(Control0, r[Control0] & ~Dwidth4); break; case 2: WR(Control0, r[Control0] | Dwidth4); //WR(Control0, r[Control0] | Hispeed); break; } } emmc.appcmd = (cmd == Appcmd); return 0; } static void emmciosetup(int write, void *buf, int bsize, int bcount) { int len; len = bsize * bcount; assert(((uintptr)buf&3) == 0); assert((len&3) == 0); assert(bsize <= 2048); WR(Blksizecnt, bcount<<16 | bsize); if(emmc.dma) sdfree(emmc.dma); emmc.dma = dmaalloc(buf, len); if(write) cachedwbse(buf, len); else cachedwbinvse(buf, len); WR(Dmadesc, emmc.busdram + (PADDR(emmc.dma) - PHYSDRAM)); okay(1); } static void emmcio(int write, uchar *buf, int len) { u32int *r; int i; r = (u32int*)EMMCREGS; if(waserror()){ okay(0); nexterror(); } WR(Irpten, r[Irpten] | Datadone|Err); tsleep(&emmc.r, datadone, 0, 3000); WR(Irpten, r[Irpten] & ~(Datadone|Err)); i = r[Interrupt]; if((i & (Datadone|Err)) != Datadone){ print("sdhc: %s error intr %ux stat %ux\n", write? "write" : "read", i, r[Status]); WR(Interrupt, i); error(Eio); } WR(Interrupt, i); if(!write) cachedinvse(buf, len); poperror(); okay(0); } static void mmcinterrupt(Ureg*, void*) { u32int *r; int i; r = (u32int*)EMMCREGS; i = r[Interrupt]; if(i&(Datadone|Err)) wakeup(&emmc.r); WR(Irpten, r[Irpten] & ~i); } SDio sdio = { "sdhc", emmcinit, emmcenable, emmcinquiry, emmccmd, emmciosetup, emmcio, .highspeed = 1, };