ref: 277a0b8e733256edfa746bc8e59eb18232fa49a1
dir: /src/Backends/Audio/miniaudio.cpp/
#include "../Audio.h" #include <stddef.h> #define MINIAUDIO_IMPLEMENTATION #define MA_NO_DECODING #define MA_API static #include "../../../external/miniaudio.h" #include "../Misc.h" #include "SoftwareMixer.h" #define MIN(a, b) ((a) < (b) ? (a) : (b)) static ma_context context; static ma_device device; static ma_mutex mutex; static ma_mutex organya_mutex; static unsigned long output_frequency; static void (*organya_callback)(void); static unsigned int organya_callback_milliseconds; static void Callback(ma_device *device, void *output_stream, const void *input_stream, ma_uint32 frames_total) { (void)device; (void)input_stream; float *stream = (float*)output_stream; ma_mutex_lock(&organya_mutex); if (organya_callback_milliseconds == 0) { ma_mutex_lock(&mutex); Mixer_MixSounds(stream, frames_total); ma_mutex_unlock(&mutex); } else { // Synchronise audio generation with Organya. // In the original game, Organya ran asynchronously in a separate thread, // firing off commands to DirectSound in realtime. To match that, we'd // need a very low-latency buffer, otherwise we'd get mistimed instruments. // Instead, we can just do this. unsigned int frames_done = 0; while (frames_done != frames_total) { static unsigned long organya_countdown; if (organya_countdown == 0) { organya_countdown = (organya_callback_milliseconds * output_frequency) / 1000; // organya_timer is in milliseconds, so convert it to audio frames organya_callback(); } const unsigned int frames_to_do = MIN(organya_countdown, frames_total - frames_done); ma_mutex_lock(&mutex); Mixer_MixSounds(stream + frames_done * 2, frames_to_do); ma_mutex_unlock(&mutex); frames_done += frames_to_do; organya_countdown -= frames_to_do; } } ma_mutex_unlock(&organya_mutex); } bool AudioBackend_Init(void) { ma_device_config config = ma_device_config_init(ma_device_type_playback); config.playback.pDeviceID = NULL; config.playback.format = ma_format_f32; config.playback.channels = 2; config.sampleRate = 0; // Let miniaudio decide what sample rate to use config.dataCallback = Callback; config.pUserData = NULL; ma_result return_value; return_value = ma_context_init(NULL, 0, NULL, &context); if (return_value == MA_SUCCESS) { return_value = ma_device_init(&context, &config, &device); if (return_value == MA_SUCCESS) { return_value = ma_mutex_init(device.pContext, &mutex); if (return_value == MA_SUCCESS) { return_value = ma_mutex_init(device.pContext, &organya_mutex); if (return_value == MA_SUCCESS) { return_value = ma_device_start(&device); if (return_value == MA_SUCCESS) { output_frequency = device.sampleRate; Mixer_Init(device.sampleRate); return true; } else { Backend_PrintError("Failed to start playback device: %s", ma_result_description(return_value)); } ma_mutex_uninit(&organya_mutex); } else { Backend_PrintError("Failed to create organya mutex: %s", ma_result_description(return_value)); } ma_mutex_uninit(&mutex); } else { Backend_PrintError("Failed to create mutex: %s", ma_result_description(return_value)); } ma_device_uninit(&device); } else { Backend_PrintError("Failed to initialize playback device: %s", ma_result_description(return_value)); } ma_context_uninit(&context); } else { Backend_PrintError("Failed to initialize context: %s", ma_result_description(return_value)); } return false; } void AudioBackend_Deinit(void) { ma_result return_value = ma_device_stop(&device); if (return_value != MA_SUCCESS) Backend_PrintError("Failed to stop playback device: %s", ma_result_description(return_value)); ma_mutex_uninit(&organya_mutex); ma_mutex_uninit(&mutex); ma_device_uninit(&device); ma_context_uninit(&context); } AudioBackend_Sound* AudioBackend_CreateSound(unsigned int frequency, const unsigned char *samples, size_t length) { ma_mutex_lock(&mutex); Mixer_Sound *sound = Mixer_CreateSound(frequency, samples, length); ma_mutex_unlock(&mutex); return (AudioBackend_Sound*)sound; } void AudioBackend_DestroySound(AudioBackend_Sound *sound) { if (sound == NULL) return; ma_mutex_lock(&mutex); Mixer_DestroySound((Mixer_Sound*)sound); ma_mutex_unlock(&mutex); } void AudioBackend_PlaySound(AudioBackend_Sound *sound, bool looping) { if (sound == NULL) return; ma_mutex_lock(&mutex); Mixer_PlaySound((Mixer_Sound*)sound, looping); ma_mutex_unlock(&mutex); } void AudioBackend_StopSound(AudioBackend_Sound *sound) { if (sound == NULL) return; ma_mutex_lock(&mutex); Mixer_StopSound((Mixer_Sound*)sound); ma_mutex_unlock(&mutex); } void AudioBackend_RewindSound(AudioBackend_Sound *sound) { if (sound == NULL) return; ma_mutex_lock(&mutex); Mixer_RewindSound((Mixer_Sound*)sound); ma_mutex_unlock(&mutex); } void AudioBackend_SetSoundFrequency(AudioBackend_Sound *sound, unsigned int frequency) { if (sound == NULL) return; ma_mutex_lock(&mutex); Mixer_SetSoundFrequency((Mixer_Sound*)sound, frequency); ma_mutex_unlock(&mutex); } void AudioBackend_SetSoundVolume(AudioBackend_Sound *sound, long volume) { if (sound == NULL) return; ma_mutex_lock(&mutex); Mixer_SetSoundVolume((Mixer_Sound*)sound, volume); ma_mutex_unlock(&mutex); } void AudioBackend_SetSoundPan(AudioBackend_Sound *sound, long pan) { if (sound == NULL) return; ma_mutex_lock(&mutex); Mixer_SetSoundPan((Mixer_Sound*)sound, pan); ma_mutex_unlock(&mutex); } void AudioBackend_SetOrganyaCallback(void (*callback)(void)) { ma_mutex_lock(&organya_mutex); organya_callback = callback; ma_mutex_unlock(&organya_mutex); } void AudioBackend_SetOrganyaTimer(unsigned int milliseconds) { ma_mutex_lock(&organya_mutex); organya_callback_milliseconds = milliseconds; ma_mutex_unlock(&organya_mutex); }