ref: ec35f468e0eba87c9f09cbbe5fa8af2591e6f914
dir: /appl/math/mersenne.b/
implement Mersenne; include "sys.m"; sys : Sys; include "draw.m"; include "ipints.m"; ipints: IPints; IPint: import ipints; # Test primality of Mersenne numbers Mersenne: module { init: fn(nil: ref Draw->Context, argv: list of string); }; init(nil: ref Draw->Context, argv: list of string) { sys = load Sys Sys->PATH; ipints = load IPints IPints->PATH; p := 3; if(tl argv != nil) p = int hd tl argv; if(isprime(p) && (p == 2 || lucas(p))) s := ""; else s = "not "; sys->print("2^%d-1 is %sprime\n", p, s); } # s such that s^2 <= n sqrt(n: int): int { v := n; r := 0; for(t := 1<<30; t; t >>= 2){ if(t+r <= v){ v -= t+r; r = (r>>1)|t; } else r = r>>1; } return r; } isprime(n: int): int { if(n < 2) return 0; if(n == 2) return 1; if((n&1) == 0) return 0; s := sqrt(n); for(i := 3; i <= s; i += 2) if(n%i == 0) return 0; return 1; } pow(b : ref IPint, n : int): ref IPint { zero := IPint.inttoip(0); one := IPint.inttoip(1); if((b.cmp(zero) == 0 && n != 0) || b.cmp(one) == 0 || n == 1) return b; if(n == 0) return one; c := b; b = one; while(n){ while(!(n & 1)){ n >>= 1; c = c.mul(c); } n--; b = c.mul(b); } return b; } lucas(p: int): int { zero := IPint.inttoip(0); one := IPint.inttoip(1); two := IPint.inttoip(2); bigp := pow(two, p).sub(one); u := IPint.inttoip(4); for(i := 2; i < p; i++){ u = u.mul(u); if(u.cmp(two) <= 0) u = two.sub(u); else u = u.sub(two).expmod(one, bigp); } return u.cmp(zero) == 0; }