ref: db3b70f1424dfd8c5ea45206790df066c53bfab0
dir: /man/2/keyring-sha1/
.TH KEYRING-SHA1 2 .SH NAME keyring: sha1, md4, md5, hmac_sha1, hmac_md5, sign, verify \- cryptographic digests and digital signatures .SH SYNOPSIS .EX include "keyring.m"; keyring := load Keyring Keyring->PATH; .ta \w'verify:\ 'u +\w'fn(\ \ \ 'u sha1: fn(buf: array of byte, n: int, digest: array of byte, state: ref DigestState): ref DigestState; md4: fn(buf: array of byte, n: int, digest: array of byte, state: ref DigestState): ref DigestState; md5: fn(buf: array of byte, n: int, digest: array of byte, state: ref DigestState): ref DigestState; hmac_sha1: fn(buf: array of byte, n: int, key: array of byte, digest: array of byte, state: ref DigestState): ref DigestState; hmac_md5: fn(buf: array of byte, n: int, key: array of byte, digest: array of byte, state: ref DigestState): ref DigestState; sign: fn(sk: ref SK, exp: int, state: ref DigestState, ha: string): ref Certificate; verify: fn(pk: ref PK, cert: ref Certificate, state: ref DigestState): int; .EE .SH DESCRIPTION .BR Sha1 , .B md4 and .B md5 are cryptographically secure hash functions that produce output called a message digest. Each function computes a hash of .I n bytes of the data in .IR buf , and updates the current .IR state . They can be called iteratively to form a single digest for many data blocks. The state is kept in the .B DigestState value referenced by .I state between calls. .I State should be .B nil on the first call, and a newly allocated .B DigestState will be returned for use in subsequent calls. On a call in which .I digest is not .BR nil , the hash is completed and copied into the .I digest array. .B Sha1 produces a 20-byte hash .RB ( SHA1dlen ), .B md4 and .B md5 a 16-byte one .RB ( MD4len and .BR MD5len ). .PP .B Hmac_sha1 and .B hmac_md5 are keyed versions of the hashing functions, following Internet RFC2104. The .I key must be provided in each call, but otherwise the calling conventions are those of .BR sha1 . The .I key must currently be no more than 64 bytes. .PP .B Sign creates a digital signature of a digest from the concatenation of: a message, the name of the signer, and an expiration time. .I State is the digest state after running .BR sha1 , .B md4 or .B md5 over the message. .I Ha is a string specifying the hash algorithm to use: .B "sha"\fR, .B "sha1"\fR, .B "md4"\fR or .B "md5"\fR. .B Sign extends the digest to cover the signer's name (taken from the private key, .IR sk ) and the expiration time. It returns a certificate containing the digital signature of the digest, signer name, hash algorithm and signature algorithm. If any parameter is invalid, .B sign returns nil. The signature algorithm is implied by the type of the private key. .PP .B Verify uses public key .I pk to verify a certificate. It returns non-zero (true) if the certificate is valid; zero (false) otherwise. .I State is the digest state after running the chosen digest algorithm over the message. .SH EXAMPLES A program to read a file and hash it using SHA might contain the following inner loop: .IP .EX state: ref DigestState = nil; while((n := sys->read(fd, buf, len buf)) > 0) state = kr->sha1(buf, n, nil, state); digest := array[kr->SHA1dlen] of byte; kr->sha1(buf, 0, digest, state); .EE .SH SOURCE .B /libinterp/keyring.c .br .B /libcrypt/hmac.c .br .B /libcrypt/md4.c .br .B /libcrypt/md5.c .br .B /libcrypt/sha1.c .SH BUGS The MD4 algorithm is included only to allow communication with software that might still use it; it should not otherwise be used now, because it is easily broken.