ref: 9f76a7f6819ac04552b4fb6588156f3e4089d1d7
dir: /libmath/fdlibm/k_tan.c/
/* derived from /netlib/fdlibm */ /* @(#)k_tan.c 1.3 95/01/18 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* __kernel_tan( x, y, k ) * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 * Input x is assumed to be bounded by ~pi/4 in magnitude. * Input y is the tail of x. * Input k indicates whether tan (if k=1) or * -1/tan (if k= -1) is returned. * * Algorithm * 1. Since tan(-x) = -tan(x), we need only to consider positive x. * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. * 3. tan(x) is approximated by a odd polynomial of degree 27 on * [0,0.67434] * 3 27 * tan(x) ~ x + T1*x + ... + T13*x * where * * |tan(x) 2 4 26 | -59.2 * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 * | x | * * Note: tan(x+y) = tan(x) + tan'(x)*y * ~ tan(x) + (1+x*x)*y * Therefore, for better accuracy in computing tan(x+y), let * 3 2 2 2 2 * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) * then * 3 2 * tan(x+y) = x + (T1*x + (x *(r+y)+y)) * * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) */ #include "fdlibm.h" static const double one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */ T[] = { 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */ 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */ 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */ 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */ 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */ 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */ 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */ 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */ 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */ 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */ 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */ 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */ }; double __kernel_tan(double x, double y, int iy) { double z,r,v,w,s; int ix,hx; hx = __HI(x); /* high word of x */ ix = hx&0x7fffffff; /* high word of |x| */ if(ix<0x3e300000) /* x < 2**-28 */ {if((int)x==0) { /* generate inexact */ if(((ix|__LO(x))|(iy+1))==0) return one/fabs(x); else return (iy==1)? x: -one/x; } } if(ix>=0x3FE59428) { /* |x|>=0.6744 */ if(hx<0) {x = -x; y = -y;} z = pio4-x; w = pio4lo-y; x = z+w; y = 0.0; } z = x*x; w = z*z; /* Break x^5*(T[1]+x^2*T[2]+...) into * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) */ r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); s = z*x; r = y + z*(s*(r+v)+y); r += T[0]*s; w = x+r; if(ix>=0x3FE59428) { v = (double)iy; return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r))); } if(iy==1) return w; else { /* if allow error up to 2 ulp, simply return -1.0/(x+r) here */ /* compute -1.0/(x+r) accurately */ double a,t; z = w; __LO(z) = 0; v = r-(z - x); /* z+v = r+x */ t = a = -1.0/w; /* a = -1.0/w */ __LO(t) = 0; s = 1.0+t*z; return t+a*(s+t*v); } }