ref: 82b046f36f8084a22bbb5d71edd0edd9179561eb
dir: /appl/math/perms.b/
# # initially generated by c2l # implement Perms; include "draw.m"; Perms: module { init: fn(nil: ref Draw->Context, argl: list of string); }; include "sys.m"; sys: Sys; init(nil: ref Draw->Context, argl: list of string) { sys = load Sys Sys->PATH; main(len argl, argl); } # # * generate permutations of N elements # * from ``On Programming, an interim report on the SETL project'', # * Jacob T Schwartz (ed), New York University # Seq: adt{ nel: int; el: array of int; }; origin: int = 1; main(argc: int, argv: list of string): int { n: int; if(argc > 1 && (as := hd tl argv)[0] == '-'){ origin = int (as[1: ]); argc--; argv = tl argv; } if(argc != 2){ sys->fprint(sys->fildes(2), "Usage: perms #elements\n"); exit; } n = int hd tl argv; if(n > 0) perms(n); exit; } perms(n: int) { seq: ref Seq; seq = newseq(n); do putseq(seq); while(eperm(seq) != nil); } putseq(seq: ref Seq) { k: int; for(k = 0; k < seq.nel; k++) sys->print(" %d", seq.el[k]+origin); sys->print("\n"); } eperm(seq: ref Seq): ref Seq { j, k, n: int; n = seq.nel; # if sequence is monotone decreasing, there are no more # permutations. Otherwise, find last point of increase hit := 0; for(j = n-2; j >= 0; j--) if(seq.el[j] < seq.el[j+1]){ hit = 1; break; } if(!hit) return nil; # then find the last seq[k] which exceeds seq[j] and swop for(k = seq.nel-1; k > j; k--) if(seq.el[k] > seq.el[j]){ { t: int; t = seq.el[k]; seq.el[k] = seq.el[j]; seq.el[j] = t; } ; break; } # then re-arrange all the elements from seq[j+1] into # increasing order for(k = j+1; k < (n+j+1)/2; k++){ kk: int; kk = n-k+j; { t: int; t = seq.el[k]; seq.el[k] = seq.el[kk]; seq.el[kk] = t; } ; } return seq; } newseq(n: int): ref Seq { seq: ref Seq; k: int; seq = ref Seq; seq.nel = n; seq.el = array[n] of int; for(k = 0; k < n; k++) seq.el[k] = k; return seq; }