ref: 75c92428225428c8fde2d015f010e608a0b12f1d
dir: /appl/wm/mpeg/fltidct.b/
implement IDCT; include "sys.m"; include "mpegio.m"; init() { } # IDCT based on Arai, Agui, and Nakajima, using flow chart Figure 4.8 # of Pennebaker & Mitchell, JPEG: Still Image Data Compression Standard. # Remember IDCT is reverse of flow of DCT. # Based on rob's readjpeg.b a0: con 1.414; a1: con 0.707; a2: con 0.541; a3: con 0.707; a4: con 1.307; a5: con -0.383; # scaling factors from eqn 4-35 of P&M s1: con 1.0196; s2: con 1.0823; s3: con 1.2026; s4: con 1.4142; s5: con 1.8000; s6: con 2.6131; s7: con 5.1258; # overall normalization of 1/16, folded into premultiplication on vertical pass scale: con 0.0625; ridct(zin: array of real, zout: array of real) { x, y: int; r := array[8*8] of real; # transform horizontally for(y=0; y<8; y++){ eighty := y<<3; # if all non-DC components are zero, just propagate the DC term if(zin[eighty+1]==0.) if(zin[eighty+2]==0. && zin[eighty+3]==0.) if(zin[eighty+4]==0. && zin[eighty+5]==0.) if(zin[eighty+6]==0. && zin[eighty+7]==0.){ v := zin[eighty]*a0; r[eighty+0] = v; r[eighty+1] = v; r[eighty+2] = v; r[eighty+3] = v; r[eighty+4] = v; r[eighty+5] = v; r[eighty+6] = v; r[eighty+7] = v; continue; } # step 5 in1 := s1*zin[eighty+1]; in3 := s3*zin[eighty+3]; in5 := s5*zin[eighty+5]; in7 := s7*zin[eighty+7]; f2 := s2*zin[eighty+2]; f3 := s6*zin[eighty+6]; f5 := (in1+in7); f7 := (in5+in3); # step 4 g2 := f2-f3; g4 := (in5-in3); g6 := (in1-in7); g7 := f5+f7; # step 3.5 t := (g4+g6)*a5; # step 3 f0 := a0*zin[eighty+0]; f1 := s4*zin[eighty+4]; f3 += f2; f2 = a1*g2; # step 2 g0 := f0+f1; g1 := f0-f1; g3 := f2+f3; g4 = t-a2*g4; g5 := a3*(f5-f7); g6 = a4*g6+t; # step 1 f0 = g0+g3; f1 = g1+f2; f2 = g1-f2; f3 = g0-g3; f5 = g5-g4; f6 := g5+g6; f7 = g6+g7; # step 6 r[eighty+0] = (f0+f7); r[eighty+1] = (f1+f6); r[eighty+2] = (f2+f5); r[eighty+3] = (f3-g4); r[eighty+4] = (f3+g4); r[eighty+5] = (f2-f5); r[eighty+6] = (f1-f6); r[eighty+7] = (f0-f7); } # transform vertically for(x=0; x<8; x++){ # step 5 in1 := scale*s1*r[x+8]; in3 := scale*s3*r[x+24]; in5 := scale*s5*r[x+40]; in7 := scale*s7*r[x+56]; f2 := scale*s2*r[x+16]; f3 := scale*s6*r[x+48]; f5 := (in1+in7); f7 := (in5+in3); # step 4 g2 := f2-f3; g4 := (in5-in3); g6 := (in1-in7); g7 := f5+f7; # step 3.5 t := (g4+g6)*a5; # step 3 f0 := scale*a0*r[x]; f1 := scale*s4*r[x+32]; f3 += f2; f2 = a1*g2; # step 2 g0 := f0+f1; g1 := f0-f1; g3 := f2+f3; g4 = t-a2*g4; g5 := a3*(f5-f7); g6 = a4*g6+t; # step 1 f0 = g0+g3; f1 = g1+f2; f2 = g1-f2; f3 = g0-g3; f5 = g5-g4; f6 := g5+g6; f7 = g6+g7; # step 6 zout[x] = (f0+f7); zout[x+8] = (f1+f6); zout[x+16] = (f2+f5); zout[x+24] = (f3-g4); zout[x+32] = (f3+g4); zout[x+40] = (f2-f5); zout[x+48] = (f1-f6); zout[x+56] = (f0-f7); } } idct(b: array of int) { tmp := array[64] of real; for (i := 0; i < 64; i++) tmp[i] = real b[i]; ridct(tmp, tmp); for (i = 0; i < 64; i++) b[i] = int tmp[i]; }