ref: 2cab6c0b2f7ccfad3c7990070ab0917cfd978cf1
dir: /appl/math/geodesy.b/
implement Geodesy; include "sys.m"; sys: Sys; include "math.m"; maths: Math; Pi: import Math; sin, cos, tan, asin, acos, atan, atan2, sqrt, fabs: import maths; include "math/geodesy.m"; Approx: con 0; Epsilon: con 0.000001; Mperft: con 0.3048; Earthrad: con 10800.0/Pi*6076.115*Mperft; # in feet (about 4000 miles) : now metres Δt: con 16.0; # now-1989 # lalo0: con "53:57:45N 01:04:55W"; # os0: con "SE6022552235"; # ellipsoids Airy1830, Airy1830m, Int1924, GRS80: con iota; Ngrid: con 100000; # in metres Vector: adt{ x, y, z: real; }; Latlong: adt{ la: real; # -Pi to Pi lo: real; # -Pi to Pi x: real; y: real; }; Ellipsoid: adt{ name: string; a: real; b: real; }; Datum: adt{ name: string; e: int; # X, Y, Z axes etc }; Mercator: adt{ name: string; F0: real; φ0λ0: string; E0: real; N0: real; e: int; }; Helmert: adt{ tx, ty, tz: real; # metres s: real; # ppm rx, ry, rz: real; # secs }; Format: adt{ dat: int; # datum cdat: int; # converting datum prj: int; # projection tmp: ref Mercator; # actual projection orig: Lalo; # origin of above projection zone: int; # UTM zone }; # ellipsoids ells := array[] of { Airy1830 => Ellipsoid("Airy1830", 6377563.396, 6356256.910), Airy1830m => Ellipsoid("Airy1830 modified", 6377340.189, 6356034.447), Int1924 => Ellipsoid("International 1924", 6378388.000, 6356911.946), GRS80 => Ellipsoid("GRS80", 6378137.000, 6356752.3141), }; # datums dats := array[] of { OSGB36 => Datum("OSGB36", Airy1830), Ireland65 => Datum("Ireland65", Airy1830m), ED50 => Datum("ED50", Int1924), WGS84 => Datum("WGS84", GRS80), ITRS2000 => Datum("ITRS2000", GRS80), ETRS89 => Datum("ETRS89", GRS80), }; # transverse Mercator projections tmps := array[] of { Natgrid => Mercator("National Grid", 0.9996012717, "49:00:00N 02:00:00W", real(4*Ngrid), real(-Ngrid), Airy1830), IrishNatgrid => Mercator("Irish National Grid", 1.000035, "53:30:00N 08:00:00W", real(2*Ngrid), real(5*Ngrid/2), Airy1830m), UTMEur => Mercator("UTM Europe", 0.9996, nil, real(5*Ngrid), real(0), Int1924), UTM => Mercator("UTM", 0.9996, nil, real(5*Ngrid), real(0), GRS80), }; # Helmert tranformations HT_WGS84_OSGB36: con Helmert(-446.448, 125.157, -542.060, 20.4894, -0.1502, -0.2470, -0.8421); HT_ITRS2000_ETRS89: con Helmert(0.054, 0.051, -0.048, 0.0, 0.000081*Δt, 0.00049*Δt, -0.000792*Δt); # Helmert matrices HM_WGS84_OSGB36, HM_OSGB36_WGS84, HM_ITRS2000_ETRS89, HM_ETRS89_ITRS2000, HM_ETRS89_OSGB36, HM_OSGB36_ETRS89, HM_IDENTITY: array of array of real; fmt: ref Format; # latlong: ref Latlong; init(d: int, t: int, z: int) { sys = load Sys Sys->PATH; maths = load Math Math->PATH; helmertinit(); format(d, t, z); # (nil, (la, lo)) := str2lalo(lalo0); # (nil, (E, N)) := os2en(os0); # latlong = ref Latlong(la, lo, real E, real N); } format(d: int, t: int, z: int) { if(fmt == nil) fmt = ref Format(WGS84, 0, Natgrid, nil, (0.0, 0.0), 30); if(d >= 0 && d <= ETRS89) fmt.dat = d; if(t >= 0 && t <= UTM) fmt.prj = t; if(z >= 1 && z <= 60) fmt.zone = z; fmt.cdat = fmt.dat; fmt.tmp = ref Mercator(tmps[fmt.prj]); if(fmt.tmp.φ0λ0 == nil) fmt.orig = utmlaloz(fmt.zone); else (nil, fmt.orig) = str2lalo(fmt.tmp.φ0λ0); e := fmt.tmp.e; if(e != dats[fmt.dat].e){ for(i := 0; i <= ETRS89; i++) if(e == dats[i].e){ fmt.cdat = i; break; } } } str2en(s: string): (int, Eano) { s = trim(s, " \t\n\r"); if(s == nil) return (0, (0.0, 0.0)); os := s[0] >= 'A' && s[0] <= 'Z' || strchrs(s, "NSEW:") < 0; en: Eano; if(os){ (ok, p) := os2en(s); if(!ok) return (0, (0.0, 0.0)); en = p; } else{ (ok, lalo) := str2lalo(s); if(!ok) return (0, (0.0, 0.0)); en = lalo2en(lalo); } return (1, en); } str2ll(s: string, pos: int, neg: int): (int, real) { (n, ls) := sys->tokenize(s, ": \t"); if(n < 1 || n > 3) return (0, 0.0); t := hd ls; ls = tl ls; v := real t; if(ls != nil){ t = hd ls; ls = tl ls; v += (real t)/60.0; } if(ls != nil){ t = hd ls; ls = tl ls; v += (real t)/3600.0; } c := t[len t-1]; if(c == pos) ; else if(c == neg) v = -v; else return (0, 0.0); return (1, norm(deg2rad(v))); } str2lalo(s: string): (int, Lalo) { s = trim(s, " \t\n\r"); p := strchr(s, 'N'); if(p < 0) p = strchr(s, 'S'); if(p < 0) return (0, (0.0, 0.0)); (ok1, la) := str2ll(s[0: p+1], 'N', 'S'); (ok2, lo) := str2ll(s[p+1: ], 'E', 'W'); if(!ok1 || !ok2 || la < -Pi/2.0 || la > Pi/2.0) return (0, (0.0, 0.0)); return (1, (la, lo)); } ll2str(ll: int, dir: string): string { d := ll/360000; ll -= 360000*d; m := ll/6000; ll -= 6000*m; s := ll/100; ll -= 100*s; return d2(d) + ":" + d2(m) + ":" + d2(s) + "." + d2(ll) + dir; } lalo2str(lalo: Lalo): string { la := int(360000.0*rad2deg(lalo.la)); lo := int(360000.0*rad2deg(lalo.lo)); lad := "N"; lod := "E"; if(la < 0){ lad = "S"; la = -la; } if(lo < 0){ lod = "W"; lo = -lo; } return ll2str(la, lad) + " " + ll2str(lo, lod); } en2os(p: Eano): string { E := trunc(p.e); N := trunc(p.n); es := E/Ngrid; ns := N/Ngrid; e := E-Ngrid*es; n := N-Ngrid*ns; d1 := 5*(4-ns/5)+es/5+'A'-3; d2 := 5*(4-ns%5)+es%5+'A'; # now account for 'I' missing if(d1 >= 'I') d1++; if(d2 >= 'I') d2++; return sys->sprint("%c%c%5.5d%5.5d", d1, d2, e, n); } os2en(s: string): (int, Eano) { s = trim(s, " \t\n\r"); if((m := len s) != 4 && m != 6 && m != 8 && m != 10 && m != 12) return (0, (0.0, 0.0)); m = m/2-1; u := Ngrid/10**m; d1 := s[0]; d2 := s[1]; if(d1 < 'A' || d2 < 'A' || d1 > 'Z' || d2 > 'Z'){ # error(sys->sprint("bad os reference %s", s)); e := u*int s[0: 1+m]; n := u*int s[1+m: 2+2*m]; return (1, (real e, real n)); } e := u*int s[2: 2+m]; n := u*int s[2+m: 2+2*m]; if(d1 >= 'I') d1--; if(d2 >= 'I') d2--; d1 -= 'A'-3; d2 -= 'A'; es := 5*(d1%5)+d2%5; ns := 5*(4-d1/5)+4-d2/5; return (1, (real(Ngrid*es+e), real(Ngrid*ns+n))); } utmlalo(lalo: Lalo): Lalo { (nil, zn) := utmzone(lalo); return utmlaloz(zn); } utmlaloz(zn: int): Lalo { return (0.0, deg2rad(real(6*zn-183))); } utmzone(lalo: Lalo): (int, int) { (la, lo) := lalo; la = rad2deg(la); lo = rad2deg(lo); zlo := trunc(lo+180.0)/6+1; if(la < -80.0) zla := 'B'; else if(la >= 84.0) zla = 'Y'; else if(la >= 72.0) zla = 'X'; else{ zla = trunc(la+80.0)/8+'C'; if(zla >= 'I') zla++; if(zla >= 'O') zla++; } return (zla, zlo); } helmertinit() { (HM_WGS84_OSGB36, HM_OSGB36_WGS84) = helminit(HT_WGS84_OSGB36); (HM_ITRS2000_ETRS89, HM_ETRS89_ITRS2000) = helminit(HT_ITRS2000_ETRS89); HM_ETRS89_OSGB36 = mulmm(HM_WGS84_OSGB36, HM_ETRS89_ITRS2000); HM_OSGB36_ETRS89 = mulmm(HM_ITRS2000_ETRS89, HM_OSGB36_WGS84); HM_IDENTITY = m := matrix(3, 4); m[0][0] = m[1][1] = m[2][2] = 1.0; # mprint(HM_WGS84_OSGB36); # mprint(HM_OSGB36_WGS84); } helminit(h: Helmert): (array of array of real, array of array of real) { m := matrix(3, 4); s := 1.0+h.s/1000000.0; rx := sec2rad(h.rx); ry := sec2rad(h.ry); rz := sec2rad(h.rz); m[0][0] = s; m[0][1] = -rz; m[0][2] = ry; m[0][3] = h.tx; m[1][0] = rz; m[1][1] = s; m[1][2] = -rx; m[1][3] = h.ty; m[2][0] = -ry; m[2][1] = rx; m[2][2] = s; m[2][3] = h.tz; return (m, inv(m)); } trans(f: int, t: int): array of array of real { case(f){ WGS84 => case(t){ WGS84 => return HM_IDENTITY; OSGB36 => return HM_WGS84_OSGB36; ITRS2000 => return HM_IDENTITY; ETRS89 => return HM_ITRS2000_ETRS89; } OSGB36 => case(t){ WGS84 => return HM_OSGB36_WGS84; OSGB36 => return HM_IDENTITY; ITRS2000 => return HM_OSGB36_WGS84; ETRS89 => return HM_OSGB36_ETRS89; } ITRS2000 => case(t){ WGS84 => return HM_IDENTITY; OSGB36 => return HM_WGS84_OSGB36; ITRS2000 => return HM_IDENTITY; ETRS89 => return HM_ITRS2000_ETRS89; } ETRS89 => case(t){ WGS84 => return HM_ETRS89_ITRS2000; OSGB36 => return HM_ETRS89_OSGB36; ITRS2000 => return HM_ETRS89_ITRS2000; ETRS89 => return HM_IDENTITY; } } return HM_IDENTITY; # Ireland65, ED50 not done } datum2datum(lalo: Lalo, f: int, t: int): Lalo { if(f == t) return lalo; (la, lo) := lalo; v := laloh2xyz(la, lo, 0.0, dats[f].e); v = mulmv(trans(f, t), v); (la, lo, nil) = xyz2laloh(v, dats[t].e); return (la, lo); } laloh2xyz(φ: real, λ: real, H: real, e: int): Vector { a := ells[e].a; b := ells[e].b; e2 := 1.0-(b/a)**2; s := sin(φ); c := cos(φ); ν := a/sqrt(1.0-e2*s*s); x := (ν+H)*c*cos(λ); y := (ν+H)*c*sin(λ); z := ((1.0-e2)*ν+H)*s; return (x, y, z); } xyz2laloh(v: Vector, e: int): (real, real, real) { x := v.x; y := v.y; z := v.z; a := ells[e].a; b := ells[e].b; e2 := 1.0-(b/a)**2; λ := atan2(y, x); p := sqrt(x*x+y*y); φ := φ1 := atan(z/(p*(1.0-e2))); ν := 0.0; do{ φ = φ1; s := sin(φ); ν = a/sqrt(1.0-e2*s*s); φ1 = atan((z+e2*ν*s)/p); }while(!small(fabs(φ-φ1))); φ = φ1; H := p/cos(φ)-ν; return (φ, λ, H); } lalo2en(lalo: Lalo): Eano { (φ, λ) := lalo; if(fmt.cdat != fmt.dat) (φ, λ) = datum2datum(lalo, fmt.dat, fmt.cdat); s := sin(φ); c := cos(φ); t2 := tan(φ)**2; (nil, F0, φ0λ0, E0, N0, e) := *fmt.tmp; a := ells[e].a; b := ells[e].b; e2 := 1.0-(b/a)**2; if(φ0λ0 == nil) # UTM (φ0, λ0) := utmlalo((φ, λ)); # don't use fmt.zone here else (φ0, λ0) = fmt.orig; n := (a-b)/(a+b); ν := a*F0/sqrt(1.0-e2*s*s); ρ := ν*(1.0-e2)/(1.0-e2*s*s); η2 := ν/ρ-1.0; φ1 := φ-φ0; φ2 := φ+φ0; M := b*F0*((1.0+n*(1.0+1.25*n*(1.0+n)))*φ1 - (3.0*n*(1.0+n*(1.0+0.875*n)))*sin(φ1)*cos(φ2) + 1.875*n*n*(1.0+n)*sin(2.0*φ1)*cos(2.0*φ2) - 35.0/24.0*n**3*sin(3.0*φ1)*cos(3.0*φ2)); I := M+N0; II := ν*s*c/2.0; III := ν*s*c**3*(5.0-t2+9.0*η2)/24.0; IIIA := ν*s*c**5*(61.0+t2*(t2-58.0))/720.0; IV := ν*c; V := ν*c**3*(ν/ρ-t2)/6.0; VI := ν*c**5*(5.0+14.0*η2+t2*(t2-18.0-58.0*η2))/120.0; λ -= λ0; λ2 := λ*λ; N := I+λ2*(II+λ2*(III+IIIA*λ2)); E := E0+λ*(IV+λ2*(V+VI*λ2)); # if(E < 0.0 || E >= real(7*Ngrid)) # E = 0.0; # if(N < 0.0 || N >= real(13*Ngrid)) # N = 0.0; return (E, N); } en2lalo(en: Eano): Lalo { E := en.e; N := en.n; (nil, F0, nil, E0, N0, e) := *fmt.tmp; a := ells[e].a; b := ells[e].b; e2 := 1.0-(b/a)**2; (φ0, λ0) := fmt.orig; n := (a-b)/(a+b); M0 := 1.0+n*(1.0+1.25*n*(1.0+n)); M1 := 3.0*n*(1.0+n*(1.0+0.875*n)); M2 := 1.875*n*n*(1.0+n); M3 := 35.0/24.0*n**3; N -= N0; M := 0.0; φ := φold := φ0; do{ φ = (N-M)/(a*F0)+φold; φ1 := φ-φ0; φ2 := φ+φ0; M = b*F0*(M0*φ1 - M1*sin(φ1)*cos(φ2) + M2*sin(2.0*φ1)*cos(2.0*φ2) - M3*sin(3.0*φ1)*cos(3.0*φ2)); φold = φ; }while(fabs(N-M) >= 0.01); s := sin(φ); c := cos(φ); t := tan(φ); t2 := t*t; ν := a*F0/sqrt(1.0-e2*s*s); ρ := ν*(1.0-e2)/(1.0-e2*s*s); η2 := ν/ρ-1.0; VII := t/(2.0*ρ*ν); VIII := VII*(5.0+η2+3.0*t2*(1.0-3.0*η2))/(12.0*ν*ν); IX := VII*(61.0+45.0*t2*(2.0+t2))/(360.0*ν**4); X := 1.0/(ν*c); XI := X*(ν/ρ+2.0*t2)/(6.0*ν*ν); XII := X*(5.0+4.0*t2*(7.0+6.0*t2))/(120.0*ν**4); XIIA := X*(61.0+2.0*t2*(331.0+60.0*t2*(11.0+6.0*t2)))/(5040.0*ν**6); E -= E0; E2 := E*E; φ = φ-E2*(VII-E2*(VIII-E2*IX)); λ := λ0+E*(X-E2*(XI-E2*(XII-E2*XIIA))); if(fmt.cdat != fmt.dat) (φ, λ) = datum2datum((φ, λ), fmt.cdat, fmt.dat); return (φ, λ); } mulmm(m1: array of array of real, m2: array of array of real): array of array of real { m := matrix(3, 4); mul3x3(m, m1, m2); for(i := 0; i < 3; i++){ sum := 0.0; for(k := 0; k < 3; k++) sum += m1[i][k]*m2[k][3]; m[i][3] = sum+m1[i][3]; } return m; } mulmv(m: array of array of real, v: Vector): Vector { x := v.x; y := v.y; z := v.z; v.x = m[0][0]*x + m[0][1]*y + m[0][2]*z + m[0][3]; v.y = m[1][0]*x + m[1][1]*y + m[1][2]*z + m[1][3]; v.z = m[2][0]*x + m[2][1]*y + m[2][2]*z + m[2][3]; return v; } inv(m: array of array of real): array of array of real { n := matrix(3, 4); inv3x3(m, n); (n[0][3], n[1][3], n[2][3]) = mulmv(n, (-m[0][3], -m[1][3], -m[2][3])); return n; } mul3x3(m: array of array of real, m1: array of array of real, m2: array of array of real) { for(i := 0; i < 3; i++){ for(j := 0; j < 3; j++){ sum := 0.0; for(k := 0; k < 3; k++) sum += m1[i][k]*m2[k][j]; m[i][j] = sum; } } } inv3x3(m: array of array of real, n: array of array of real) { t00 := m[0][0]; t01 := m[0][1]; t02 := m[0][2]; t10 := m[1][0]; t11 := m[1][1]; t12 := m[1][2]; t20 := m[2][0]; t21 := m[2][1]; t22 := m[2][2]; n[0][0] = t11*t22-t12*t21; n[1][0] = t12*t20-t10*t22; n[2][0] = t10*t21-t11*t20; n[0][1] = t02*t21-t01*t22; n[1][1] = t00*t22-t02*t20; n[2][1] = t01*t20-t00*t21; n[0][2] = t01*t12-t02*t11; n[1][2] = t02*t10-t00*t12; n[2][2] = t00*t11-t01*t10; d := t00*n[0][0]+t01*n[1][0]+t02*n[2][0]; for(i := 0; i < 3; i++) for(j := 0; j < 3; j++) n[i][j] /= d; } matrix(rows: int, cols: int): array of array of real { m := array[rows] of array of real; for(i := 0; i < rows; i++) m[i] = array[cols] of { * => 0.0 }; return m; } vprint(v: Vector) { sys->print(" %f %f %f\n", v.x, v.y, v.z); } mprint(m: array of array of real) { for(i := 0; i < len m; i++){ for(j := 0; j < len m[i]; j++) sys->print(" %f", m[i][j]); sys->print("\n"); } } # lalo2xy(la: real, lo: real, lalo: ref Latlong): Eano # { # x, y: real; # # la0 := lalo.la; # lo0 := lalo.lo; # if(Approx){ # x = Earthrad*cos(la0)*(lo-lo0)+lalo.x; # y = Earthrad*(la-la0)+lalo.y; # } # else{ # x = Earthrad*cos(la)*sin(lo-lo0)+lalo.x; # y = Earthrad*(sin(la)*cos(la0)-sin(la0)*cos(la)*cos(lo-lo0))+lalo.y; # } # return (x, y); # } # lalo2xyz(la: real, lo: real, lalo: ref Latlong): (int, int, int) # { # z: real; # # la0 := lalo.la; # lo0 := lalo.lo; # (x, y) := lalo2xy(la, lo, lalo); # if(Approx) # z = Earthrad; # else # z = Earthrad*(sin(la)*sin(la0)+cos(la)*cos(la0)*cos(lo-lo0)); # return (x, y, int z); # } # xy2lalo(p: Eano, lalo: ref Latlong): (real, real) # { # la, lo: real; # # x := p.e; # y := p.n; # la0 := lalo.la; # lo0 := lalo.lo; # if(Approx){ # la = la0 + (y-lalo.y)/Earthrad; # lo = lo0 + (x-lalo.x)/(Earthrad*cos(la0)); # } # else{ # a, b, c, d, bestd, r, r1, r2, lat, lon, tmp: real; # i, n: int; # # bestd = -1.0; # la = lo = 0.0; # a = (x-lalo.x)/Earthrad; # b = (y-lalo.y)/Earthrad; # (n, r1, r2) = quad(1.0, -2.0*b*cos(la0), (a*a-1.0)*sin(la0)*sin(la0)+b*b); # if(n == 0) # return (la, lo); # while(--n >= 0){ # if(n == 1) # r = r2; # else # r = r1; # if(fabs(r) <= 1.0){ # lat = asin(r); # c = cos(lat); # if(small(c)) # tmp = 0.0; # lat = +90, -90, lon = lo0 # else # tmp = a/c; # if(fabs(tmp) <= 1.0){ # for(i = 0; i < 2; i++){ # if(i == 0) # lon = norm(asin(tmp)+lo0); # else # lon = norm(Pi-asin(tmp)+lo0); # (X, Y, Z) := lalo2xyz(lat, lon, lalo); # # eliminate non-roots by d, root on other side of earth by Z # d = (real X-x)**2+(real Y-y)**2; # if(Z >= 0 && (bestd < 0.0 || d < bestd)){ # bestd = d; # la = lat; # lo = lon; # } # } # } # } # } # } # return (la, lo); # } # quad(a: real, b: real, c: real): (int, real, real) # { # r1, r2: real; # # D := b*b-4.0*a*c; # if(small(a)){ # if(small(b)) # return (0, r1, r2); # r1 = r2 = -c/b; # return (1, r1, r2); # } # if(D < 0.0) # return (0, r1, r2); # D = sqrt(D); # r1 = (-b+D)/(2.0*a); # r2 = (-b-D)/(2.0*a); # if(small(D)) # return (1, r1, r2); # else # return (2, r1, r2); # } d2(v: int): string { s := string v; if(v < 10) s = "0" + s; return s; } trim(s: string, t: string): string { while(s != nil && strchr(t, s[0]) >= 0) s = s[1: ]; while(s != nil && strchr(t, s[len s-1]) >= 0) s = s[0: len s-1]; return s; } strchrs(s: string, t: string): int { for(i := 0; i < len t; i++){ p := strchr(s, t[i]); if(p >= 0) return p; } return -1; } strchr(s: string, c: int): int { for(i := 0; i < len s; i++) if(s[i] == c) return i; return -1; } deg2rad(d: real): real { return d*Pi/180.0; } rad2deg(r: real): real { return r*180.0/Pi; } sec2rad(s: real): real { return deg2rad(s/3600.0); } norm(r: real): real { while(r > Pi) r -= 2.0*Pi; while(r < -Pi) r += 2.0*Pi; return r; } small(r: real): int { return r > -Epsilon && r < Epsilon; } trunc(r: real): int { # down : assumes r >= 0 i := int r; if(real i > r) i--; return i; } abs(x: int): int { if(x < 0) return -x; return x; }