ref: 00c219c7d9c2b9f60c2db0e1ba7289b2301209a7
dir: /utils/6c/div.c/
#include "gc.h" /* * Based on: Granlund, T.; Montgomery, P.L. * "Division by Invariant Integers using Multiplication". * SIGPLAN Notices, Vol. 29, June 1994, page 61. */ #define TN(n) ((uvlong)1 << (n)) #define T31 TN(31) #define T32 TN(32) int multiplier(ulong d, int p, uvlong *mp) { int l; uvlong mlo, mhi, tlo, thi; l = topbit(d - 1) + 1; mlo = (((TN(l) - d) << 32) / d) + T32; if(l + p == 64) mhi = (((TN(l) + 1 - d) << 32) / d) + T32; else mhi = (TN(32 + l) + TN(32 + l - p)) / d; /*assert(mlo < mhi);*/ while(l > 0) { tlo = mlo >> 1; thi = mhi >> 1; if(tlo == thi) break; mlo = tlo; mhi = thi; l--; } *mp = mhi; return l; } int sdiv(ulong d, ulong *mp, int *sp) { int s; uvlong m; s = multiplier(d, 32 - 1, &m); *mp = m; *sp = s; if(m >= T31) return 1; else return 0; } int udiv(ulong d, ulong *mp, int *sp, int *pp) { int p, s; uvlong m; s = multiplier(d, 32, &m); p = 0; if(m >= T32) { while((d & 1) == 0) { d >>= 1; p++; } s = multiplier(d, 32 - p, &m); } *mp = m; *pp = p; if(m >= T32) { /*assert(p == 0);*/ *sp = s - 1; return 1; } else { *sp = s; return 0; } } void sdivgen(Node *l, Node *r, Node *ax, Node *dx) { int a, s; ulong m; vlong c; c = r->vconst; if(c < 0) c = -c; a = sdiv(c, &m, &s); //print("a=%d i=%ld s=%d m=%lux\n", a, (long)r->vconst, s, m); gins(AMOVL, nodconst(m), ax); gins(AIMULL, l, Z); gins(AMOVL, l, ax); if(a) gins(AADDL, ax, dx); gins(ASHRL, nodconst(31), ax); gins(ASARL, nodconst(s), dx); gins(AADDL, ax, dx); if(r->vconst < 0) gins(ANEGL, Z, dx); } void udivgen(Node *l, Node *r, Node *ax, Node *dx) { int a, s, t; ulong m; Node nod; a = udiv(r->vconst, &m, &s, &t); //print("a=%ud i=%ld p=%d s=%d m=%lux\n", a, (long)r->vconst, t, s, m); if(t != 0) { gins(AMOVL, l, ax); gins(ASHRL, nodconst(t), ax); gins(AMOVL, nodconst(m), dx); gins(AMULL, dx, Z); } else if(a) { if(l->op != OREGISTER) { regalloc(&nod, l, Z); gins(AMOVL, l, &nod); l = &nod; } gins(AMOVL, nodconst(m), ax); gins(AMULL, l, Z); gins(AADDL, l, dx); gins(ARCRL, nodconst(1), dx); if(l == &nod) regfree(l); } else { gins(AMOVL, nodconst(m), ax); gins(AMULL, l, Z); } if(s != 0) gins(ASHRL, nodconst(s), dx); } void sext(Node *d, Node *s, Node *l) { if(s->reg == D_AX && !nodreg(d, Z, D_DX)) { reg[D_DX]++; gins(ACDQ, Z, Z); } else { regalloc(d, l, Z); gins(AMOVL, s, d); gins(ASARL, nodconst(31), d); } } void sdiv2(long c, int v, Node *l, Node *n) { Node nod; if(v > 0) { if(v > 1) { sext(&nod, n, l); gins(AANDL, nodconst((1 << v) - 1), &nod); gins(AADDL, &nod, n); regfree(&nod); } else { gins(ACMPL, n, nodconst(0x80000000)); gins(ASBBL, nodconst(-1), n); } gins(ASARL, nodconst(v), n); } if(c < 0) gins(ANEGL, Z, n); } void smod2(long c, int v, Node *l, Node *n) { Node nod; if(c == 1) { zeroregm(n); return; } sext(&nod, n, l); if(v == 0) { zeroregm(n); gins(AXORL, &nod, n); gins(ASUBL, &nod, n); } else if(v > 1) { gins(AANDL, nodconst((1 << v) - 1), &nod); gins(AADDL, &nod, n); gins(AANDL, nodconst((1 << v) - 1), n); gins(ASUBL, &nod, n); } else { gins(AANDL, nodconst(1), n); gins(AXORL, &nod, n); gins(ASUBL, &nod, n); } regfree(&nod); }