ref: 05aeef461f7c52ff852cf84d81b1228ccdcb90d4
dir: /jsdtoa.c/
/* The authors of this software are Rob Pike and Ken Thompson. * Copyright (c) 2002 by Lucent Technologies. * Permission to use, copy, modify, and distribute this software for any * purpose without fee is hereby granted, provided that this entire notice * is included in all copies of any software which is or includes a copy * or modification of this software and in all copies of the supporting * documentation for such software. * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED * WARRANTY. IN PARTICULAR, NEITHER THE AUTHORS NOR LUCENT TECHNOLOGIES MAKE ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. */ #include <stdio.h> #include <math.h> #include <float.h> #include <string.h> #include <stdlib.h> #include <errno.h> #include "jsi.h" typedef unsigned long ulong; enum { NSIGNIF = 17 }; /* * first few powers of 10, enough for about 1/2 of the * total space for doubles. */ static double pows10[] = { 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22, 1e23, 1e24, 1e25, 1e26, 1e27, 1e28, 1e29, 1e30, 1e31, 1e32, 1e33, 1e34, 1e35, 1e36, 1e37, 1e38, 1e39, 1e40, 1e41, 1e42, 1e43, 1e44, 1e45, 1e46, 1e47, 1e48, 1e49, 1e50, 1e51, 1e52, 1e53, 1e54, 1e55, 1e56, 1e57, 1e58, 1e59, 1e60, 1e61, 1e62, 1e63, 1e64, 1e65, 1e66, 1e67, 1e68, 1e69, 1e70, 1e71, 1e72, 1e73, 1e74, 1e75, 1e76, 1e77, 1e78, 1e79, 1e80, 1e81, 1e82, 1e83, 1e84, 1e85, 1e86, 1e87, 1e88, 1e89, 1e90, 1e91, 1e92, 1e93, 1e94, 1e95, 1e96, 1e97, 1e98, 1e99, 1e100, 1e101, 1e102, 1e103, 1e104, 1e105, 1e106, 1e107, 1e108, 1e109, 1e110, 1e111, 1e112, 1e113, 1e114, 1e115, 1e116, 1e117, 1e118, 1e119, 1e120, 1e121, 1e122, 1e123, 1e124, 1e125, 1e126, 1e127, 1e128, 1e129, 1e130, 1e131, 1e132, 1e133, 1e134, 1e135, 1e136, 1e137, 1e138, 1e139, 1e140, 1e141, 1e142, 1e143, 1e144, 1e145, 1e146, 1e147, 1e148, 1e149, 1e150, 1e151, 1e152, 1e153, 1e154, 1e155, 1e156, 1e157, 1e158, 1e159, }; #define npows10 ((int)(sizeof(pows10)/sizeof(pows10[0]))) #define pow10(x) fmtpow10(x) static double pow10(int n) { double d; int neg; neg = 0; if(n < 0){ neg = 1; n = -n; } if(n < npows10) d = pows10[n]; else{ d = pows10[npows10-1]; for(;;){ n -= npows10 - 1; if(n < npows10){ d *= pows10[n]; break; } d *= pows10[npows10 - 1]; } } if(neg) return 1./d; return d; } /* * add 1 to the decimal integer string a of length n. * if 99999 overflows into 10000, return 1 to tell caller * to move the virtual decimal point. */ static int xadd1(char *a, int n) { char *b; int c; if(n < 0 || n > NSIGNIF) return 0; for(b = a+n-1; b >= a; b--) { c = *b + 1; if(c <= '9') { *b = c; return 0; } *b = '0'; } /* * need to overflow adding digit. * shift number down and insert 1 at beginning. * decimal is known to be 0s or we wouldn't * have gotten this far. (e.g., 99999+1 => 00000) */ a[0] = '1'; return 1; } /* * subtract 1 from the decimal integer string a. * if 10000 underflows into 09999, make it 99999 * and return 1 to tell caller to move the virtual * decimal point. this way, xsub1 is inverse of xadd1. */ static int xsub1(char *a, int n) { char *b; int c; if(n < 0 || n > NSIGNIF) return 0; for(b = a+n-1; b >= a; b--) { c = *b - 1; if(c >= '0') { if(c == '0' && b == a) { /* * just zeroed the top digit; shift everyone up. * decimal is known to be 9s or we wouldn't * have gotten this far. (e.g., 10000-1 => 09999) */ *b = '9'; return 1; } *b = c; return 0; } *b = '9'; } /* * can't get here. the number a is always normalized * so that it has a nonzero first digit. */ return 0; } /* * format exponent like sprintf(p, "e%+d", e) */ void js_fmtexp(char *p, int e) { char se[9]; int i; *p++ = 'e'; if(e < 0) { *p++ = '-'; e = -e; } else *p++ = '+'; i = 0; while(e) { se[i++] = e % 10 + '0'; e /= 10; } while(i < 1) se[i++] = '0'; while(i > 0) *p++ = se[--i]; *p++ = '\0'; } /* * compute decimal integer m, exp such that: * f = m*10^exp * m is as short as possible with losing exactness * assumes special cases (NaN, +Inf, -Inf) have been handled. */ void js_dtoa(double f, char *s, int *exp, int *neg, int *ns) { int c, d, e2, e, ee, i, ndigit, oerrno; char tmp[NSIGNIF+10]; double g; oerrno = errno; /* in case strtod smashes errno */ /* * make f non-negative. */ *neg = 0; if(f < 0) { f = -f; *neg = 1; } /* * must handle zero specially. */ if(f == 0){ *exp = 0; s[0] = '0'; s[1] = '\0'; *ns = 1; return; } /* * find g,e such that f = g*10^e. * guess 10-exponent using 2-exponent, then fine tune. */ frexp(f, &e2); e = (int)(e2 * .301029995664); g = f * pow10(-e); while(g < 1) { e--; g = f * pow10(-e); } while(g >= 10) { e++; g = f * pow10(-e); } /* * convert NSIGNIF digits as a first approximation. */ for(i=0; i<NSIGNIF; i++) { d = (int)g; s[i] = d+'0'; g = (g-d) * 10; } s[i] = 0; /* * adjust e because s is 314159... not 3.14159... */ e -= NSIGNIF-1; js_fmtexp(s+NSIGNIF, e); /* * adjust conversion until strtod(s) == f exactly. */ for(i=0; i<10; i++) { g = js_strtod(s, NULL); if(f > g) { if(xadd1(s, NSIGNIF)) { /* gained a digit */ e--; js_fmtexp(s+NSIGNIF, e); } continue; } if(f < g) { if(xsub1(s, NSIGNIF)) { /* lost a digit */ e++; js_fmtexp(s+NSIGNIF, e); } continue; } break; } /* * play with the decimal to try to simplify. */ /* * bump last few digits up to 9 if we can */ for(i=NSIGNIF-1; i>=NSIGNIF-3; i--) { c = s[i]; if(c != '9') { s[i] = '9'; g = js_strtod(s, NULL); if(g != f) { s[i] = c; break; } } } /* * add 1 in hopes of turning 9s to 0s */ if(s[NSIGNIF-1] == '9') { strcpy(tmp, s); ee = e; if(xadd1(tmp, NSIGNIF)) { ee--; js_fmtexp(tmp+NSIGNIF, ee); } g = js_strtod(tmp, NULL); if(g == f) { strcpy(s, tmp); e = ee; } } /* * bump last few digits down to 0 as we can. */ for(i=NSIGNIF-1; i>=NSIGNIF-3; i--) { c = s[i]; if(c != '0') { s[i] = '0'; g = js_strtod(s, NULL); if(g != f) { s[i] = c; break; } } } /* * remove trailing zeros. */ ndigit = NSIGNIF; while(ndigit > 1 && s[ndigit-1] == '0'){ e++; --ndigit; } s[ndigit] = 0; *exp = e; *ns = ndigit; errno = oerrno; } static inline ulong umuldiv(ulong a, ulong b, ulong c) { double d; d = ((double)a * (double)b) / (double)c; if(d >= 4294967295.) d = 4294967295.; return (ulong)d; } /* * This routine will convert to arbitrary precision * floating point entirely in multi-precision fixed. * The answer is the closest floating point number to * the given decimal number. Exactly half way are * rounded ala ieee rules. * Method is to scale input decimal between .500 and .999... * with external power of 2, then binary search for the * closest mantissa to this decimal number. * Nmant is is the required precision. (53 for ieee dp) * Nbits is the max number of bits/word. (must be <= 28) * Prec is calculated - the number of words of fixed mantissa. */ enum { Nbits = 28, /* bits safely represented in a ulong */ Nmant = 53, /* bits of precision required */ Prec = (Nmant+Nbits+1)/Nbits, /* words of Nbits each to represent mantissa */ Sigbit = 1<<(Prec*Nbits-Nmant), /* first significant bit of Prec-th word */ Ndig = 1500, One = (ulong)(1<<Nbits), Half = (ulong)(One>>1), Maxe = 310, Fsign = 1<<0, /* found - */ Fesign = 1<<1, /* found e- */ Fdpoint = 1<<2, /* found . */ S0 = 0, /* _ _S0 +S1 #S2 .S3 */ S1, /* _+ #S2 .S3 */ S2, /* _+# #S2 .S4 eS5 */ S3, /* _+. #S4 */ S4, /* _+#.# #S4 eS5 */ S5, /* _+#.#e +S6 #S7 */ S6, /* _+#.#e+ #S7 */ S7 /* _+#.#e+# #S7 */ }; static int xcmp(char*, char*); static int fpcmp(char*, ulong*); static void frnorm(ulong*); static void divascii(char*, int*, int*, int*); static void mulascii(char*, int*, int*, int*); typedef struct Tab Tab; struct Tab { int bp; int siz; char* cmp; }; double js_strtod(const char *as, char **aas) { int na, ex, dp, bp, c, i, flag, state; ulong low[Prec], hig[Prec], mid[Prec]; double d; char *s, a[Ndig]; flag = 0; /* Fsign, Fesign, Fdpoint */ na = 0; /* number of digits of a[] */ dp = 0; /* na of decimal point */ ex = 0; /* exonent */ state = S0; for(s=(char*)as;; s++) { c = *s; if(c >= '0' && c <= '9') { switch(state) { case S0: case S1: case S2: state = S2; break; case S3: case S4: state = S4; break; case S5: case S6: case S7: state = S7; ex = ex*10 + (c-'0'); continue; } if(na == 0 && c == '0') { dp--; continue; } if(na < Ndig-50) a[na++] = c; continue; } switch(c) { case '\t': case '\n': case '\v': case '\f': case '\r': case ' ': if(state == S0) continue; break; case '-': if(state == S0) flag |= Fsign; else flag |= Fesign; /* fall through */ case '+': if(state == S0) state = S1; else if(state == S5) state = S6; else break; /* syntax */ continue; case '.': flag |= Fdpoint; dp = na; if(state == S0 || state == S1) { state = S3; continue; } if(state == S2) { state = S4; continue; } break; case 'e': case 'E': if(state == S2 || state == S4) { state = S5; continue; } break; } break; } /* * clean up return char-pointer */ switch(state) { case S0: if(xcmp(s, "nan") == 0) { if(aas != NULL) *aas = s+3; goto retnan; } /* fall through */ case S1: if(xcmp(s, "infinity") == 0) { if(aas != NULL) *aas = s+8; goto retinf; } if(xcmp(s, "inf") == 0) { if(aas != NULL) *aas = s+3; goto retinf; } /* fall through */ case S3: if(aas != NULL) *aas = (char*)as; goto ret0; /* no digits found */ case S6: s--; /* back over +- */ /* fall through */ case S5: s--; /* back over e */ break; } if(aas != NULL) *aas = s; if(flag & Fdpoint) while(na > 0 && a[na-1] == '0') na--; if(na == 0) goto ret0; /* zero */ a[na] = 0; if(!(flag & Fdpoint)) dp = na; if(flag & Fesign) ex = -ex; dp += ex; if(dp < -Maxe){ errno = ERANGE; goto ret0; /* underflow by exp */ } else if(dp > +Maxe) goto retinf; /* overflow by exp */ /* * normalize the decimal ascii number * to range .[5-9][0-9]* e0 */ bp = 0; /* binary exponent */ while(dp > 0) divascii(a, &na, &dp, &bp); while(dp < 0 || a[0] < '5') mulascii(a, &na, &dp, &bp); /* close approx by naive conversion */ mid[0] = 0; mid[1] = 1; for(i=0; (c=a[i]) != '\0'; i++) { mid[0] = mid[0]*10 + (c-'0'); mid[1] = mid[1]*10; if(i >= 8) break; } low[0] = umuldiv(mid[0], One, mid[1]); hig[0] = umuldiv(mid[0]+1, One, mid[1]); for(i=1; i<Prec; i++) { low[i] = 0; hig[i] = One-1; } /* binary search for closest mantissa */ for(;;) { /* mid = (hig + low) / 2 */ c = 0; for(i=0; i<Prec; i++) { mid[i] = hig[i] + low[i]; if(c) mid[i] += One; c = mid[i] & 1; mid[i] >>= 1; } frnorm(mid); /* compare */ c = fpcmp(a, mid); if(c > 0) { c = 1; for(i=0; i<Prec; i++) if(low[i] != mid[i]) { c = 0; low[i] = mid[i]; } if(c) break; /* between mid and hig */ continue; } if(c < 0) { for(i=0; i<Prec; i++) hig[i] = mid[i]; continue; } /* only hard part is if even/odd roundings wants to go up */ c = mid[Prec-1] & (Sigbit-1); if(c == Sigbit/2 && (mid[Prec-1]&Sigbit) == 0) mid[Prec-1] -= c; break; /* exactly mid */ } /* normal rounding applies */ c = mid[Prec-1] & (Sigbit-1); mid[Prec-1] -= c; if(c >= Sigbit/2) { mid[Prec-1] += Sigbit; frnorm(mid); } goto out; ret0: if(flag & Fsign) return -0.0; return 0; retnan: return NAN; retinf: /* * Unix strtod requires these. Plan 9 would return Inf(0) or Inf(-1). */ errno = ERANGE; if(flag & Fsign) return -HUGE_VAL; return HUGE_VAL; out: d = 0; for(i=0; i<Prec; i++) d = d*One + mid[i]; if(flag & Fsign) d = -d; d = ldexp(d, bp - Prec*Nbits); if(d == 0){ /* underflow */ errno = ERANGE; } return d; } static void frnorm(ulong *f) { int i, c; c = 0; for(i=Prec-1; i>0; i--) { f[i] += c; c = f[i] >> Nbits; f[i] &= One-1; } f[0] += c; } static int fpcmp(char *a, ulong* f) { ulong tf[Prec]; int i, d, c; for(i=0; i<Prec; i++) tf[i] = f[i]; for(;;) { /* tf *= 10 */ for(i=0; i<Prec; i++) tf[i] = tf[i]*10; frnorm(tf); d = (tf[0] >> Nbits) + '0'; tf[0] &= One-1; /* compare next digit */ c = *a; if(c == 0) { if('0' < d) return -1; if(tf[0] != 0) goto cont; for(i=1; i<Prec; i++) if(tf[i] != 0) goto cont; return 0; } if(c > d) return +1; if(c < d) return -1; a++; cont:; } } static inline void divby(char *a, int *na, int b) { int n, c; char *p; p = a; n = 0; while(n>>b == 0) { c = *a++; if(c == 0) { while(n) { c = n*10; if(c>>b) break; n = c; } goto xx; } n = n*10 + c-'0'; (*na)--; } for(;;) { c = n>>b; n -= c<<b; *p++ = c + '0'; c = *a++; if(c == 0) break; n = n*10 + c-'0'; } (*na)++; xx: while(n) { n = n*10; c = n>>b; n -= c<<b; *p++ = c + '0'; (*na)++; if (*na >= Ndig) break; /* abort if overflowing */ } *p = 0; } static Tab tab1[] = { { 1, 0, "" }, { 3, 1, "7" }, { 6, 2, "63" }, { 9, 3, "511" }, { 13, 4, "8191" }, { 16, 5, "65535" }, { 19, 6, "524287" }, { 23, 7, "8388607" }, { 26, 8, "67108863" }, { 27, 9, "134217727" }, }; static void divascii(char *a, int *na, int *dp, int *bp) { int b, d; Tab *t; d = *dp; if(d >= (int)(nelem(tab1))) d = (int)(nelem(tab1))-1; t = tab1 + d; b = t->bp; if(memcmp(a, t->cmp, t->siz) > 0) d--; *dp -= d; *bp += b; divby(a, na, b); } static inline void mulby(char *a, char *p, char *q, int b) { int n, c; n = 0; *p = 0; for(;;) { q--; if(q < a) break; c = *q - '0'; c = (c<<b) + n; n = c/10; c -= n*10; p--; *p = c + '0'; } while(n) { c = n; n = c/10; c -= n*10; p--; *p = c + '0'; } } static Tab tab2[] = { { 1, 1, "" }, /* dp = 0-0 */ { 3, 3, "125" }, { 6, 5, "15625" }, { 9, 7, "1953125" }, { 13, 10, "1220703125" }, { 16, 12, "152587890625" }, { 19, 14, "19073486328125" }, { 23, 17, "11920928955078125" }, { 26, 19, "1490116119384765625" }, { 27, 19, "7450580596923828125" }, /* dp 8-9 */ }; static void mulascii(char *a, int *na, int *dp, int *bp) { char *p; int d, b; Tab *t; d = -*dp; if(d >= (int)(nelem(tab2))) d = (int)(nelem(tab2))-1; t = tab2 + d; b = t->bp; if(memcmp(a, t->cmp, t->siz) < 0) d--; p = a + *na; *bp -= b; *dp += d; *na += d; mulby(a, p+d, p, b); } static int xcmp(char *a, char *b) { int c1, c2; while((c1 = *b++) != '\0') { c2 = *a++; if(c2 >= 'A' && c2 <= 'Z') c2 = c2 - 'A' + 'a'; if(c1 != c2) return 1; } return 0; }